Steger K, Balhorn R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. Anat Histol Embryol. 2018;47:273–9.
Article
Google Scholar
Bao J, Bedford MT. Epigenetic regulation of the histone-to protamine transition during spermiogenesis. Reproduction. 2016;151(5):R55–70. https://doi.org/10.1530/REP-15-0562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanco M, Cocquet J. Genetic factors affecting sperm chromatin strructure. Adv ExpMed Biol. 2019;1166:1–28.
Article
CAS
Google Scholar
Smith TB, Dun MD, Smith ND, Curry JB, Connaughton HS, Aitken RJ. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated b OGG1. J Cell Sci. 2013;126(6):1488–97.
Article
CAS
Google Scholar
World Health Organization (WHO). World health organization laboratory manual for the examination and processing of human semen. Geneva: World Health Organization; 2010.
Google Scholar
Ribas-Mayou J, Benet J. Single and double strand sperm DNA damage: different reproductive effects on male fertility. Genes (Basel). 2019;10(2). https://doi.org/10.3390/genes10020105.
Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.
Article
CAS
Google Scholar
Alshahrani S, Agarwal A, Assidi M, Abuzenadah AM, Durairajanayagam D, Ayaz A, et al. Infertile men older than 40 years are at higher risk of sperm DNA damage. Reprod Biol Endocrinol. 2014;12:103. https://doi.org/10.1186/1477-7827-12-103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xavier MJ, Nixon B, Roman SD, Scott RJ, Drevet JR, Aitken RJ. Paternal impacts on development: identification of genomic regions vulnerable to oxidative DNA damage in human spermatozoa. Hum Reprod. 2019;34(10):1876–90. https://doi.org/10.1093/humrep/dez153.
Article
CAS
PubMed
Google Scholar
Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S, et al. Advancing paternal age and autism. Arch Gen Psychiatry. 2006;63(9):1026–32.
Article
Google Scholar
Singh A, Agarwal A. The role of sperm chromatin integrity and DNA damage on male infertility. Open Reprod Sci J. 2011;3:65–71.
Article
CAS
Google Scholar
Sipos A, Rasmussen F, Harrison G, Tynelius P, Lewis G, Leon DA, et al. Paternal age and schizophrenia: a population based cohort study. BMJ. 2004;329(7474):1070.
Article
Google Scholar
Drevet JR, Aitken RJ. Oxidation of sperm nucleus in mammals: a physiological necessity to some extent with adverse impacts on oocyte and offspring. Antioxidants. 2020;9(2). https://doi.org/10.3390/antiox9020111.
Zhang Y, Shi J, Rassoulzadegan M, Tuorto F, Chen Q. Sperm RNA code programmes the metabolic health of offspring. Nat Rev Endocrinol. 2019;15(8):489–98.
Article
Google Scholar
Gannon JR, Emery BR, Jenkins TG, Carrell DT. The sperm epigenome: implications for the embryo. Adv Exp Med Biol. 2014;791:53–66.
Article
Google Scholar
Cissen M, Wely MV, Scholten I, Mansell S, Bruin JP, Mol BW, et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0165125. https://doi.org/10.1371/journal.pone.0165125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl. 2017;19:80–90.
PubMed
Google Scholar
Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.
Article
Google Scholar
Agarwal A, Zini A, Sigman M. Is sperm DNA integrity assessment useful? J Urol. 2013;190(5):1645–7. https://doi.org/10.1016/j.juro.2013.08.004.
Article
PubMed
Google Scholar
Nasr-Esfahani MH, Deemeh MR, Tavalaee M. New era in sperm selection for ICSI. Int J Androl. 2012;35(4):475–84. https://doi.org/10.1111/j.1365-2605.2011.01227.x.
Article
CAS
PubMed
Google Scholar
Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30:219–29.
Article
CAS
Google Scholar
Ribas-Maynou J, Garcia-Peiro A, Fernandez-Encinas A, Abad C, Amengual M, Prada E, et al. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral comet assay. Andrology. 2013;1:715–22.
Article
CAS
Google Scholar
Dadoune J, Mayaux M, Guihard-Moscato M. Correlation between defects in chromatin condensation of human spermatozoa stained by aniline blue and semen characteristics. Andrologia. 1988;20:211–7.
Article
CAS
Google Scholar
Foresta C, Zorzi M, Rossato M, Varotto A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int J Androl. 1992;15:330–7.
Article
CAS
Google Scholar
Pourmasumi S, Khoradmehr A, Rahiminia T, Sabeti P, Talebi AR, Ghasemzadeh J. Evaluation of sperm chromatin integrity using aniline blue and toluidine blue staining in infertile and normozoospermic men. J Reprod Infertil. 2019;20(2):95–101.
PubMed
PubMed Central
Google Scholar
Iranpour FG. The effects of protamine deficiency on ultrastructure of human sperm nucleus. Adv Biomed Res. 2014;3:24. https://doi.org/10.4103/2277-9175.124666.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sridharan G, Shankar AA. Toluidine blue: a review of its chemistry and clinical utility. J Oral Maxillofac Pathol. 2012;16(2):251–5. https://doi.org/10.4103/0973-029X.99081.
Article
PubMed
PubMed Central
Google Scholar
Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207(1):202–5.
Article
CAS
Google Scholar
Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. Methods Mol Biol. 2013;927:121–36.
Article
CAS
Google Scholar
Lewis SE, Agbaje IM. Using the alkaline comet assay in prognostic tests for male infertility an assisted reproductive technology outcomes. Mutagenesis. 2008;23(3):163–70.
Article
CAS
Google Scholar
Evenson DP. Sperm chromatin structure assay (SCSA®). Methods Mol Biol. 2013;927:147–64.
Article
CAS
Google Scholar
Henkel R, Hoogendijk CF, Bouic PJ, Kruger TF. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia. 2010;42(5):305–13. https://doi.org/10.1111/j.1439-0272.2009.01002.x.
Article
PubMed
Google Scholar
Ward WS. Eight tests for sperm DNA fragmentation and their roles in the clinic. Transl Androl Urol. 2017;6(4):S468–70. https://doi.org/10.21037/tau.2017.03.78.
Article
PubMed
PubMed Central
Google Scholar
Mitchell LA, De Iuliis GN, Aitken RJ. The TUNEL assay consistently underestimates DNA damge in human spermatozoa and is influenced by DNA compaction and cell vitality: developmental of an improved methodology. Int J Androl. 2011;34(1):2–13. https://doi.org/10.1111/j.1365-2605.2009.01042.x.
Article
CAS
PubMed
Google Scholar
Aitken RJ, Bronson R, Smith TB, De Iuliis GN. The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies. Mol Hum Reprod. 2013;19(8):475–85. https://doi.org/10.1093/molehr/gat025.
Article
CAS
PubMed
Google Scholar
Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;210:1131–3.
Article
CAS
Google Scholar
Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81(5):1290–5.
Article
Google Scholar
Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23(1):25–43.
Article
Google Scholar
Evenson DP, Wixon R. Environmental toxicants cause sperm FNA fragmentation as detected by the sperm chromatin structure assay (SCSA). Toxicol Appl Pharmacol. 2005;207:532–7.
Article
Google Scholar
Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case control study. Int J Androl. 2010;33(1):e221–7. https://doi.org/10.1111/j.1365-2605.2009.00995.x.
Article
PubMed
Google Scholar
Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G, et al. Sperm chromatin damage impairs human fertilirty. Fertil Steril. 2000;73:43–50.
Article
CAS
Google Scholar
Erenpreiss J, Elzanaty S, Giwercman A. Sperm DNA damage in men from infertile couples. Asian J Androl. 2008;10(5):786–90. https://doi.org/10.1111/j.1745-7262.2008.00417.x.
Article
PubMed
Google Scholar
Saleh RA, Agarwal A, Nelson DR, Nada EA, El Tonsy MH, Alvarez JG, et al. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78(2):313–8.
Article
Google Scholar
Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproductive technology outcome. Hum Reprod. 2007;22(1):174–9.
Article
CAS
Google Scholar
Bungum M, Bungum L, Lynch KF, Wedlund L, Humaidan P, Giwercman A. Spermatozoa DNA damage measured by sperm chromatin structure assay (SCSA) and birth characteristics in children conceived by IVF and ICSI. Int J Androl. 2012;35(4):485–90. https://doi.org/10.1111/j.1365-2605.2011.01222.x.
Article
CAS
PubMed
Google Scholar
Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod BioMed Online. 2011;23(6):724–34. https://doi.org/10.1016/j.rbmo.2011.08.010.
Article
CAS
PubMed
Google Scholar
San Gabriel MC, Haddad N, Pedraza CE, Vingataramin L, LeSaint C, Bissonnette F, et al. The weak correlations between sperm DNA fragmentation assays suggest that chromatin packaging is complex. Fertil Steril. 2017;108(3):e137. https://doi.org/10.1016/j.fertnstert.2017.07.413.
Article
Google Scholar
Lolis D, Georgiou I, Syrrou M, Zikopoulos K, Konstantelli M, Messinis I. Chromomycin A3-staining as an indicator of protamine deficiency and fertilization. Int J Androl. 1996;19(1):23–7.
Article
CAS
Google Scholar
Tsarev I, Bungum M, Giwercman A, Erenpreisa J, Ebessen T, Ernst E, et al. Evaluation of male fertility potential by toluidine blue test for sperm chromatin structure assessment. Hum Reprod. 2009;24(7):1569–74. https://doi.org/10.1093/humrep/dep068.
Article
CAS
PubMed
Google Scholar
Sabeti P, Amidi F, Kalantar SM, Gilani MAS, Pourmasumi S, Najafi A, et al. Evaluation of intracellular anion superoxide level, heat shock protein A2 and protamine positive spermatozoa percentages in teratoasthenozoospermia. Int J Reprod Biomed. 2017;15(5):279–86.
Article
CAS
Google Scholar
Ajina T, Ammar O, Haouas Z, Sallem A, Ezzi L, Grissa I, et al. Assessment of human sperm DNA integrity using two cytochemical tests: acridine orange test and toluidine blue assay. Andrologia. 2017;49e:e12765.
Article
Google Scholar
Talebi A, Vahedi S, Aflatoonian A, Ghasemi N, Ghasemzadeh J, Firoozabadi R, et al. Cytochemical evaluation of sperm chromatin and DNA integrity in couples with unexplained recurrent spontaneous abortions. Andrologia. 2012;44:462–70.
Article
Google Scholar
Franken D, Franken C, De La Guerre H, De Villiers A. Normal sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining. Andrologia. 1999;31:361–6.
Article
CAS
Google Scholar
Gawecka JE, Boaz S, Kasperson K, Nguyen H, Evenson DP, Ward WS. Luminal fluid of epididymis and vas deferens contributes to sperm chromatin fragmentation. Hum Reprod. 2015;30(12):2725–36. https://doi.org/10.1093/humrep/dev245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4(5):789–99. https://doi.org/10.1111/andr.12216.
Article
CAS
PubMed
Google Scholar
Tarozzi N, Nadalini M, Stronati A, Bizzaro D, Dal Prato L, Coticchio G, Borini A. Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod BioMed Online. 2009;18(4):486–95. https://doi.org/10.1016/s1472-6483(10)60124-1.
Article
PubMed
Google Scholar
Nili HA, Mozdarani H, Aleyasin A. Correlation of sperm DNA damage with protamine deficiency in Iranian subfertile men. Reprod BioMed Online. 2009;18(4):479–85. https://doi.org/10.1016/s1472-6483(10)60123-x.
Article
PubMed
Google Scholar
Amor H, Shelko N, Hamad MF, Zeyad A, Hammadeh ME. An additional marker for sperm DNA quality evaluation in spermatozoa of male partners of couples undergoing assisted reproduction technique (IVF/ICSI): Protamine ratio. Andrologia. 2019;51(10):e13400. https://doi.org/10.1111/and.13400.
Article
PubMed
Google Scholar
Esquerré-Lamare C, Walschaerts M, Chansel Debordeaux L, Moreau J, Bretelle F, Isus F, et al. Sperm aneuploidy and DNA fragmentation in unexplained recurrent pregnancy loss: a multicenter case-control study. Basic Clin Androl. 2018;28:4. https://doi.org/10.1186/s12610-018-0070-6.
Article
PubMed
PubMed Central
Google Scholar
Nijs M, Creemers E, Cox A, Franssen K, Janssen M, Vanheusden E, et al. Chromomycin A3 staining, sperm chromatin structure assay and hyaluronic acid binding assay as predictors for assisted reproductive outcome. Reprod BioMed Online. 2009;19(5):671–84.
Article
CAS
Google Scholar
Hosseinifar H, Yazdanikhah S, Modarresi T, Totonchi M, Sadighi Gilani MA, et al. Correlation between sperm DNA fragmentation index and CMA3 positive spermatozoa in globozoospermic patients. Andrology. 2015;3(3):526–31. https://doi.org/10.1111/andr.12030.
Article
CAS
PubMed
Google Scholar
Bahreinian M, Tavalaee M, Abbasi H, Kiani-Esfahani A, Shiravi AH, Nasr-Esfahani MH. DNA hypomethylation predisposes sperm to DNA damage in individuals with varicocele. Syst Biol Reprod Med. 2015;61(4):179–86. https://doi.org/10.3109/19396368.2015.1020116.
Article
CAS
PubMed
Google Scholar
Björndahl L, Mortimer D, Barratt CLR. A practical guide to basic laboratory andrology. Cambridge: Cambridge University Press; 2010. ISBN 978-1-139-48249-3.
Björndahl L, Kvist U. A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability. Syst Biol Reprod Med. 2011;57(1–2):86–92. https://doi.org/10.3109/193963268.2010.516306.
Article
PubMed
Google Scholar
García J, Noriega-Hoces L, Gonzales GF. Sperm chromatin stability and its relationship with fertilization rate after intracytoplasmic sperm injection (ICSI) in an assisted reproduction program. J Assist Reprod Genet. 2007;24(12):587–93. https://doi.org/10.1007/s10815-007-9174-1.
Article
PubMed
PubMed Central
Google Scholar
Vorilhon S, Brugnon F, Kocer A, Dollet S, Bourgne C, Berger M, et al. Accuracy of human sperm DNA oxidation quantification and threshold etermination using an 8-OHdG immunodtection assay. Hum Reprod. 2018;33(4):553–62. https://doi.org/10.1093/humrep/dey038.
Article
CAS
PubMed
Google Scholar
Gharagozloo P, Gutiérrez-Adán A, Champroux A, Noblanc A, Kocer A, Calle A, et al. A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: promising pre-clinical evidences from animal models. Hum Reprod. 2016;31(2):252–62. https://doi.org/10.1093/humrep/dev302.
Article
CAS
PubMed
Google Scholar
Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest. 2009;119(7):2074–85. https://doi.org/10.1172/JCI38940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noblanc A, Damon-Soubeyrand C, Karrich B, Henry-Berger J, Cadet R, Saez F, et al. DNA oxidative damage in mammailiabn spermatozoa: where and why is the male nucleus affected. Free Radic Biol Med. 2013;65:719–23. https://doi.org/10.1016/j.freeradbiomed.2013.07.044.
Article
CAS
PubMed
Google Scholar
Champroux A, Damon-Soubeyrand C, Goubely C, Bravard S, Henry-Berger J, Guiton R, et al. Nuclear integrity but not topology of mouse sperm chromosomes is affected by oxidative DNA damage. Genes (Basel). 2018;9(10). https://doi.org/10.3390/genes9100501.
Deenadayal Mettler A, Govindarajan M, Srinivas S, Mithraprabhu S, Evenson D, et al. Male age associated with sperm DNA/chromatin integrity. Aging Male. 2019;9:1–8.
Article
Google Scholar
Evenson DP, Djira G, Kasperson K, Christianson J. Relationship between age of 25K men attending infertility clinics and SCSA test data on sperm DNA fragmentation (%DFI) and high DNA stainability (%HDS) sperm. Fertil Steril. 2018;110(4):e290.
Article
Google Scholar
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.
Article
CAS
Google Scholar
Paoli D, Pecora G, Pallotti F, Faja F, Pelloni M, Lenzi A, Lombardo F. Cytological and molecular aspects of the ageing sperm. Hum Reprod. 2019;34(2):218–27. https://doi.org/10.1093/humrep/dey357.
Article
CAS
PubMed
Google Scholar
Chu C, Yu L, Henry-Berger J, Ru Y-F, Kocer A, Champroux A, Li Z-T, He M, Xie S-S, Ma W-B, Ni M-J, Ni Z-M, Guo Y-L, Fei Z-L, Gou L-T, Liu Q, Sharma S, Zhou Y, Liu M-F, Degui Chen C, Eamens A, Nixon B, Zhou Y-C, Drevet JR, Zhang Y-L. Knockout of glutathione peroxidase 5 down-regulates the piRNAs in the caput epididymidis of aged mice. Asian J Androl. 2020;22:1–12.
Article
Google Scholar
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://doi.org/10.2147/CIA.S158513 eCollection 2018.PMID: 29731617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Booze M, Brannian J, Von Wald T, Hansen K, Kasperson K, Evenson DP. High DNA stainability in the SCSA is associated with poor embryo development and lower implantation rate. RBMO. 2018;39(2):E3–4.
Google Scholar
Jerre E, Bungum M, Evenson D, Giwercman A. Sperm chromatin structure assay high DNA stainability sperm as a marker of early miscarriage after intracytoplasmic sperm injection. Fertil Steril. 2019;112(1):46–53.e2. https://doi.org/10.1016/j.fertnstert.2019.03.013.
Article
CAS
PubMed
Google Scholar