World Health Organization: Towards more objectivity in diagnosis and management of male fertility. Int J Androl. 1997, 7 (Suppl): 1-53.
Google Scholar
Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ: Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metabol. 2008, 93: 3199-3207. 10.1210/jc.2007-2616.
CAS
Google Scholar
Halliwell B, Gutteridge J: Antioxidant defences: endogenous and diet derived. Free Radicals in Biology and Medicine. Edited by: Halliwell B, Gutteridge J. 2007, New York: Oxford University Press, 79-186.
Google Scholar
Aitken RJ, Jones KT, Robertson SA: Reactive oxygen species and sperm function-sickness and in health. J Androl. 2012, 33: 1096-1106. 10.2164/jandrol.112.016535.
CAS
PubMed
Google Scholar
Ferramosca A, Pinto Provenzano S, Montagna DD, Coppola L, Zara V: Oxidative stress negatively affects human sperm mitochondrial respiration. Urology. 2013, 82: 78-83. 10.1016/j.urology.2013.03.058.
PubMed
Google Scholar
Agarwal A, Gupta S, Sikka S: The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006, 18: 325-332. 10.1097/01.gco.0000193003.58158.4e.
PubMed
Google Scholar
Aitken RJ, Baker MA: Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006, 250: 66-69. 10.1016/j.mce.2005.12.026.
CAS
PubMed
Google Scholar
Gagnon C, Iwasaki A, de Lamirande E, Kovalski N: Reactive oxygen species and human spermatozoa. Ann N Y Acad Sci. 1991, 637: 436-444. 10.1111/j.1749-6632.1991.tb27328.x.
CAS
PubMed
Google Scholar
de Lamirande E, Gagnon C: Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995, 10 (Suppl 1): 15-21. 10.1093/humrep/10.suppl_1.15.
PubMed
Google Scholar
Halliwell B: Oxidative stress and neurodegeneration: where are we now?. J Neurochem. 2006, 97: 1634-1658. 10.1111/j.1471-4159.2006.03907.x.
CAS
PubMed
Google Scholar
Halliwell B, Gutteridge J: Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. Free Radicals in Biology and Medicine. Edited by: Halliwell B, Gutteridge J. 2007, New York: Oxford University Press, 187-267.
Google Scholar
Li Y, Zhu H, Stansbury KL, Trush MA: Role of reactive oxygen species in multistage carcinogenesis. Oxygen radicals and the disease process. Edited by: Thomas CE, Kalyanaram B. 1997, Amsterdam: Academic PRess Publishers, 237-278.
Google Scholar
Griveau JF, Le Lannou D: Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997, 20: 61-69. 10.1046/j.1365-2605.1997.00044.x.
CAS
PubMed
Google Scholar
Sikka SC, Rajasekaran M, Hellstrom WJ: Role of oxidative stress and antioxidants in male infertility. J Androl. 1995, 16: 464-468.
CAS
PubMed
Google Scholar
de Kretser DM, Baker HWG: Infertility in Men: recent advances and continuing controversies. J Clin Endocrinol Metab. 1999, 84: 3443-3450.
CAS
PubMed
Google Scholar
Anderson JB, Williamson RC: Testicular torsion in Bristol: a 25-year review. Br J Surg. 1988, 75: 988-992. 10.1002/bjs.1800751015.
CAS
PubMed
Google Scholar
Brennemann W, Stoffel-Wagner B, Helmers A, Mezger J, Jager N, Klingmuller D: Gonadal function of patients treated with cisplatin based chemotherapy for germ cell cancer. J Urol. 1997, 158: 844-850. 10.1016/S0022-5347(01)64333-7.
CAS
PubMed
Google Scholar
Hasegawa M, Wilson G, Russell LD, Meistrich ML: Radiation-induced cell death in the mouse testis: relationship to apoptosis. Radiat Res. 1997, 147: 457-467. 10.2307/3579503.
CAS
PubMed
Google Scholar
Smith R, Kaune H, Parodi D, Madariaga M, Rios R, Morales I, Castro A: Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2006, 21: 986-993.
CAS
PubMed
Google Scholar
Tremellen K: Oxidative stress and male infertility: a clinical perspective. Hum Reprod Update. 2008, 14: 243-258. 10.1093/humupd/dmn004.
CAS
PubMed
Google Scholar
Lewis SEM, Sterling ES, Young IS, Thompson W: Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril. 1997, 67: 142-147. 10.1016/S0015-0282(97)81871-7.
CAS
PubMed
Google Scholar
Linschooten JO, Laubenthal J, Cemeli E, Baumgartner A, Anderson D, Sipinen VE, Brunborg G, Haenen GRM, Fthenou E, Briede JJ, van Schooten FJ, Godschalk RWL: Incomplete protection of genetic integrity of mature spermatozoa against oxidative stress. Reproductive Toxicology. 2011, 32: 106-11. 10.1016/j.reprotox.2011.05.004.
CAS
PubMed
Google Scholar
Storey BT: Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa. Mol Hum Reprod. 1997, 3: 203-213. 10.1093/molehr/3.3.203.
CAS
PubMed
Google Scholar
Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS: Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998, 59: 1037-1046. 10.1095/biolreprod59.5.1037.
CAS
PubMed
Google Scholar
Barroso G, Morshedi M, Oehninger S: Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod. 2000, 15: 1338-1344. 10.1093/humrep/15.6.1338.
CAS
PubMed
Google Scholar
Piasecka M, Kawiak J: Sperm mitochondria of patients with normal sperm motility and with asthenozoospermia: morphological and functional study. Folia Histochem Cytobiol. 2003, 41: 125-39.
PubMed
Google Scholar
Gallon F, Marchetti C, Jouy N, Marchetti P: The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil Steril. 2006, 86: 1526-1530. 10.1016/j.fertnstert.2006.03.055.
PubMed
Google Scholar
de Lamirande E, Gagnon C: Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl. 1992, 13: 368-378.
CAS
PubMed
Google Scholar
de Lamirande E, Gagnon C: Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J Androl. 1992, 13: 379-386.
CAS
PubMed
Google Scholar
Lewis SE, Aitken RJ: DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005, 322: 33-41. 10.1007/s00441-005-1097-5.
CAS
PubMed
Google Scholar
Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ: Assisted reproductive technologies and the risk of birth defects–a systematic review. Hum Reprod. 2005, 20: 328-338.
PubMed
Google Scholar
Marchetti F, Wyrobek AJ: Mechanisms and consequences of paternally-transmitted chromosomal abnormalities. Birth Defects Res C Embryo Today. 2005, 75: 112-129. 10.1002/bdrc.20040.
CAS
PubMed
Google Scholar
Hansen M, Kurinczuk JJ, Bower C, Webb S: The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002, 346: 725-730. 10.1056/NEJMoa010035.
PubMed
Google Scholar
Frein D, Schildknecht S, Bachschmid M, Ullrich V: Redox regulation: A new challenge for pharmacology. Biochem Pharmacol. 2005, 70: 811-823. 10.1016/j.bcp.2005.04.012.
CAS
PubMed
Google Scholar
Rhee SG: Cell signaling. H2O2, a necessary evil for cell signaling. Science. 2006, 312: 1882-1883. 10.1126/science.1130481.
PubMed
Google Scholar
Rhee SG, Bae YS, Lee SR, Kwon J: Hydrogen peroxide: a Key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE. 2000, 53: e1-
Google Scholar
Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA: Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 2005, 17: 183-189. 10.1016/j.ceb.2005.02.004.
CAS
PubMed
Google Scholar
de Lamirande E, Gagnon C: Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med. 1995, 18: 487-495. 10.1016/0891-5849(94)00169-K.
CAS
PubMed
Google Scholar
O'Flaherty C, Beorlegui N, Beconi MT: Participation of superoxide anion in the capacitation of cryopreserved bovine sperm. Int J Androl. 2003, 26: 109-114. 10.1046/j.1365-2605.2003.00404.x.
PubMed
Google Scholar
Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS: A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci. 1998, 111 (Pt 5): 645-656.
CAS
PubMed
Google Scholar
de Lamirande E, O'Flaherty C: Sperm activation: Role of reactive oxygen species and kinases. Biochim Biophys Acta. 2008, 1784: 106-115. 10.1016/j.bbapap.2007.08.024.
CAS
PubMed
Google Scholar
O'Flaherty C, de Lamirande E, Gagnon C: Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med. 2006, 41: 528-540. 10.1016/j.freeradbiomed.2006.04.027.
PubMed
Google Scholar
Gong S, San Gabriel MC, Zini A, Chan P, O'Flaherty C: Low amounts and high thiol oxidation of peroxiredoxins in spermatozoa from infertile Men. J Androl. 2012, 33: 1342-1351. 10.2164/jandrol.111.016162.
CAS
PubMed
Google Scholar
Smith R, Vantman D, Ponce J, Escobar J, Lissi E: Andrology: Total antioxidant capacity of human seminal plasma. Hum Reprod. 1996, 11: 1655-1660. 10.1093/oxfordjournals.humrep.a019465.
CAS
PubMed
Google Scholar
Zini A, Fischer MA, Mak V, Phang D, Jarvi K: Catalase-like and superoxide dismutase-like activities in human seminal plasma. Urol Res. 2002, 30: 321-323. 10.1007/s00240-002-0283-0.
CAS
PubMed
Google Scholar
de Lamirande E: Semenogelin, the main protein of the human semen coagulum, regulates sperm function. Semin Thromb Hemost. 2007, 33: 60-68. 10.1055/s-2006-958463.
CAS
PubMed
Google Scholar
de Lamirande E, Lamothe G: Levels of semenogelin in human spermatozoa decrease during capacitation: involvement of reactive oxygen species and zinc. Hum Reprod. 2010, 25: 1619-1630. 10.1093/humrep/deq110.
CAS
PubMed
Google Scholar
O'Flaherty C, de Lamirande E, Gagnon C: Phosphorylation of the Arginine-X-X-(Serine/Threonine) motif in human sperm proteins during capacitation: modulation and protein kinase A dependency. Mol Hum Reprod. 2004, 10: 355-363. 10.1093/molehr/gah046.
PubMed
Google Scholar
O'Flaherty C, de Lamirande E, Gagnon C: Reactive oxygen species and protein kinases modulate the level of phospho-MEK-like proteins during human sperm capacitation. Biol Reprod. 2005, 73: 94-105. 10.1095/biolreprod.104.038794.
PubMed
Google Scholar
O'Flaherty C, de Lamirande E, Gagnon C: Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radic Biol Med. 2006, 40: 1045-1055. 10.1016/j.freeradbiomed.2005.10.055.
PubMed
Google Scholar
Hofmann B, Hecht HJ, Flohe L: Peroxiredoxins. Biol Chem. 2002, 383: 347-364.
CAS
PubMed
Google Scholar
Rhee SG, Chae HZ, Kim K: Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005, 38: 1543-1552. 10.1016/j.freeradbiomed.2005.02.026.
CAS
PubMed
Google Scholar
Wood ZA, Poole LB, Karplus PA: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003, 300: 650-653. 10.1126/science.1080405.
CAS
PubMed
Google Scholar
Rhee SG, Kang SW, Chang TS, Jeong W, Kim K: Peroxiredoxin, a novel family of peroxidases. IUBMB Life. 2001, 52: 35-41. 10.1080/15216540252774748.
CAS
PubMed
Google Scholar
Ishii T, Kawane T, Taketani S, Bannai S: Inhibition of the thiol-specific antioxidant activity of rat liver MSP23 protein by hemin. Biochem Biophys Res Commun. 1995, 16: 970-975.
Google Scholar
Jin DY, Chae HZ, Rhee SG, Jeang KT: Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem. 1997, 272: 30952-30961. 10.1074/jbc.272.49.30952.
CAS
PubMed
Google Scholar
Syed V, Hecht NB: Rat pachytene spermatocytes down-regulate a polo-like kinase and up-regulate a thiol-specific antioxidant protein, whereas sertoli cells down-regulate a phosphodiesterase and up-regulate an oxidative stress protein after exposure to methoxyethanol and methoxyacetic acid. Endocrinology. 1998, 139: 3503-3511.
CAS
PubMed
Google Scholar
Zhang P, Liu B, Kang SW, Seo MS, Rhee SG, Obeid LM: Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem. 1997, 272: 30615-30618. 10.1074/jbc.272.49.30615.
CAS
PubMed
Google Scholar
Dubuisson M, Vander Stricht D, Clippe A, Etienne F, Nauser T, Kissner R, Koppenol WH, Rees JF, Knoops B: Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett. 2004, 571: 161-165. 10.1016/j.febslet.2004.06.080.
CAS
PubMed
Google Scholar
Peshenko IV, Shichi H: Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic Biol Med. 2001, 31: 292-303. 10.1016/S0891-5849(01)00579-2.
CAS
PubMed
Google Scholar
Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG: Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem. 1998, 273: 6297-6302. 10.1074/jbc.273.11.6297.
CAS
PubMed
Google Scholar
Wood ZA, Schröder E, Robin Harris J, Poole LB: Structure, mechanism and regulation of peroxiredoxins. Trends in Biochem Sci. 2003, 28: 32-40. 10.1016/S0968-0004(02)00003-8.
CAS
Google Scholar
Baty JW, Hampton MB, Winterbourn CC: Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells. Biochem J. 2005, 389: 785-795. 10.1042/BJ20050337.
PubMed Central
CAS
PubMed
Google Scholar
Cox AG, Hampton MB: Bcl-2 over-expression promotes genomic instability by inhibiting apoptosis of cells exposed to hydrogen peroxide. Carcinogenesis. 2007, 28: 2166-2171. 10.1093/carcin/bgm093.
CAS
PubMed
Google Scholar
Low FM, Hampton MB, Peskin AV, Winterbourn CC: Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte. Blood. 2007, 109: 2611-2617. 10.1182/blood-2006-09-048728.
CAS
PubMed
Google Scholar
Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC: The high reactivity of peroxiredoxin 2 with H2O2 is Not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem. 2007, 282: 11885-11892. 10.1074/jbc.M700339200.
CAS
PubMed
Google Scholar
Winterbourn CC, Hampton MB: Thiol chemistry and specificity in redox signaling. Free Radic Biol Med. 2008, 45: 549-561. 10.1016/j.freeradbiomed.2008.05.004.
CAS
PubMed
Google Scholar
Winterbourn CC: The Biological Chemistry of Hydrogen Peroxide. Methods in Enzymology Hydrogen Peroxide and Cell Signaling, Part C. Edited by: Cadenas E, Packer L. 2013, Waltham: Academic Press, 3-25.
Google Scholar
Karplus P, Poole L: Peroxiredoxins as molecular triage agents, sacrificing themselves to enhance cell survival during a peroxide attack. Mol Cell. 2012, 45: 275-278. 10.1016/j.molcel.2012.01.012.
PubMed Central
CAS
PubMed
Google Scholar
Fourquet S, Huang ME, D'Autreaux B, Toledano MB: The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Antioxid Redox Signal. 2008, 10: 1565-1576. 10.1089/ars.2008.2049.
CAS
PubMed
Google Scholar
Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH: 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med. 2005, 11: 571-578. 10.1016/j.molmed.2005.10.006.
CAS
PubMed
Google Scholar
Woo HA, Kang SW, Kim HK, Yang KS, Chae HZ, Rhee SG: Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem. 2003, 278: 47361-47364. 10.1074/jbc.C300428200.
CAS
PubMed
Google Scholar
Biteau B, Labarre J, Toledano MB: ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 2003, 425: 980-984. 10.1038/nature02075.
CAS
PubMed
Google Scholar
Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM: Regeneration of Peroxiredoxins by p53-Regulated Sestrins, Homologs of Bacterial AhpD. Science. 2004, 304: 596-600. 10.1126/science.1095569.
CAS
PubMed
Google Scholar
Jonsson TJ, Johnson LC, Lowther WT: Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature. 2008, 451: 98-101. 10.1038/nature06415.
PubMed Central
PubMed
Google Scholar
Chae HZ, Kang SW, Rhee SG: Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods in Enzymology Oxidants and Antioxidants Part B. Edited by: Lester P. 1999, San Diego: Academic Press, 219–-226.
Google Scholar
Smith-Pearson PS, Kooshki M, Spitz DR, Poole LB, Zhao W, Robbins ME: Decreasing peroxiredoxin II expression decreases glutathione, alters cell cycle distribution, and sensitizes glioma cells to ionizing radiation and H2O2. Free Radic Biol Med. 2008, 8: 1178-1189.
Google Scholar
Immenschuh S, Baumgart-Vogt E: Peroxiredoxins, oxidative stress, and cell proliferation. Antiox Redox Signal. 2005, 7: 768-777. 10.1089/ars.2005.7.768.
CAS
Google Scholar
Kropotov A, Gogvadze V, Shupliakov O, Tomilin N, Serikov VB, Tomilin NV, Zhivotovsky B: Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Exp Cell Res. 2006, 312: 2806-2815. 10.1016/j.yexcr.2006.05.006.
CAS
PubMed
Google Scholar
Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA: Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature. 2003, 424: 561-565. 10.1038/nature01819.
CAS
PubMed
Google Scholar
Egler RA, Fernandes E, Rothermund K, Sereika S, de Souza-Pinto N, Jaruga P, Dizdaroglu M, Prochownik EV: Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene. 2005, 24: 8038-8050. 10.1038/sj.onc.1208821.
CAS
PubMed
Google Scholar
Han YH, Kim HS, Kim JM, Kim SK, Yu DY, Moon EY: Inhibitory role of peroxiredoxin II (Prx II) on cellular senescence. FEBS Lett. 2005, 579: 4897-4902. 10.1016/j.febslet.2005.07.049.
CAS
PubMed
Google Scholar
Ozkosem B, O'Flaherty C: Detrimental effects of oxidative stress on spermatozoa lacking peroxiredoxin 6. Free Radic Biol Med. 2012, 53: S86-
Google Scholar
Sasagawa I, Matsuki S, Suzuki Y, Iuchi Y, Tohya K, Kimura M, Nakada T, Fujii J: Possible involvement of the membrane-bound form of peroxiredoxin 4 in acrosome formation during spermiogenesis of rats. Eur J Biochem. 2001, 268: 3053-3061. 10.1046/j.1432-1327.2001.02200.x.
CAS
PubMed
Google Scholar
O'Flaherty C, de Souza AR: Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod. 2011, 84: 238-247. 10.1095/biolreprod.110.085712.
PubMed Central
PubMed
Google Scholar
Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, Fujii J: Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J. 2009, 419: 149-158. 10.1042/BJ20081526.
CAS
PubMed
Google Scholar
Mennella MR, Jones R: Properties of spermatozoal superoxide dismutase and lack of involvement of superoxides in metal-ion-catalysed lipid-peroxidation and reactions in semen. Biochem J. 1980, 191: 289-297.
PubMed Central
CAS
PubMed
Google Scholar
Schneider M, Forster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, Neumuller C, Deutsch MJ, Walch A, Hrabe De Angelis M, Wurst W, Ursini F, Roveri A, Maleszewski M, Maiorino M, Conrad M: Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 2009, 23: 3233-3242. 10.1096/fj.09-132795.
CAS
PubMed
Google Scholar
Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohe L: Dual function of the selenoprotein PHGPx during sperm maturation. Science. 1999, 285: 1393-1396. 10.1126/science.285.5432.1393.
CAS
PubMed
Google Scholar
Miranda-Vizuete A, Ljung J, Damdimopoulos AE, Gustafsson J, Oko R, Pelto-Huikko M, Spyrou G: Characterization of sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem. 2001, 276: 31567-31574. 10.1074/jbc.M101760200.
CAS
PubMed
Google Scholar
Miranda-Vizuete A, Sadek CM, Jimenez A, Krause WJ, Sutovsky P, Oko R: The mammalian testis-specific thioredoxin system. Antiox Redox Signal. 2004, 6: 25-40. 10.1089/152308604771978327.
CAS
Google Scholar
Yu Y, Oko R, Miranda-Vizuete A: Developmental expression of spermatid-specific thioredoxin-1 protein: transient association to the longitudinal columns of the fibrous sheath during sperm tail formation. Biol Reprod. 2002, 67: 1546-1554. 10.1095/biolreprod.102.004838.
CAS
PubMed
Google Scholar
Miranda-Vizuete A, Tsang K, Yu Y, Jimenez A, Pelto-Huikko M, Flickinger CJ, Sutovsky P, Oko R: Cloning and developmental analysis of murid spermatid-specific thioredoxin-2 (SPTRX-2), a novel sperm fibrous sheath protein and autoantigen. J Biol Chem. 2003, 278: 44874-44885. 10.1074/jbc.M305475200.
CAS
PubMed
Google Scholar
Sadek CM, Jimenez A, Damdimopoulos AE, Kieselbach T, Nord M, Gustafsson J, Spyrou G, Davis EC, Oko R, van der Hoorn FA, Miranda-Vizuete A: Characterization of Human Thioredoxin-like 2: A novel microtubule-binding thioredoxin expressed predominantly in the cilia of lung airway epithelium and spermatid and spermatid manchette and axoneme. J Biol Chem. 2003, 278: 13133-13142. 10.1074/jbc.M300369200.
PubMed Central
CAS
PubMed
Google Scholar
Banmeyer I, Marchand C, Verhaeghe C, Vucic B, Rees JF, Knoops B: Overexpression of human peroxiredoxin 5 in subcellular compartments of chinese hamster ovary cells: effects on cytotoxicity and DNA damage caused by peroxides. Free Radic Biol Med. 2004, 36: 65-77. 10.1016/j.freeradbiomed.2003.10.019.
CAS
PubMed
Google Scholar
Immenschuh S, Baumgart-Vogt E, Tan M, Iwahara S, Ramadori G, Fahimi HD: Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in Rat liver. J Histochem Cytochem. 2003, 51: 1621-1631. 10.1177/002215540305101206.
CAS
PubMed
Google Scholar
Oberley TD, Verwiebe E, Zhong W, Kang SW, Rhee SG: Localization of the thioredoxin system in normal rat kidney. Free Radic Biol Med. 2001, 30: 412-424. 10.1016/S0891-5849(00)00486-X.
CAS
PubMed
Google Scholar
Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG: Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem. 2000, 275: 20346-20354. 10.1074/jbc.M001943200.
CAS
PubMed
Google Scholar
Thannickal VJ, Fanburg BL: Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000, 279: L1005-L1028.
CAS
PubMed
Google Scholar
Manandhar G, Miranda-Vizuete A, Pedrajas JR, Krause WJ, Zimmerman S, Sutovsky M, Sutovsky P: Peroxiredoxin 2 and peroxidase enzymatic activity of mammalian spermatozoa. Biol Reprod. 2009, 80: 1168-1177. 10.1095/biolreprod.108.071738.
CAS
PubMed
Google Scholar
Zini A, de Lamirande E, Gagnon C: Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl. 1993, 16: 183-188. 10.1111/j.1365-2605.1993.tb01177.x.
CAS
PubMed
Google Scholar
Nenicu A, Luers GH, Kovacs W, Bergmann M, Baumgart-Vogt E: Peroxisomes in human and mouse testis: differential expression of peroxisomal proteins in germ cells and distinct somatic cell types of the testis. Biol Reprod. 2007, 77: 1060-1072. 10.1095/biolreprod.107.061242.
CAS
PubMed
Google Scholar
Aitken RJ, Harkiss D, Buckingham D: Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J Reprod Fertil. 1993, 98: 257-265. 10.1530/jrf.0.0980257.
CAS
PubMed
Google Scholar
Chabory E, Damon C, Lenoir A, Henry-Berger J, Vernet P, Cadet R, Saez F, Drevet JR: Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. J Anim Sci. 2009, 88: 1321-1331.
PubMed
Google Scholar
Williams K, Frayne J, Hall L: Expression of extracellular glutathione peroxidase type 5 (GPX5) in the rat male reproductive tract. Mol Hum Reprod. 1998, 4: 841-848. 10.1093/molehr/4.9.841.
CAS
PubMed
Google Scholar
Foresta C, Flohe L, Garolla A, Roveri A, Ursini F, Maiorino M: Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol Reprod. 2002, 67: 967-971. 10.1095/biolreprod.102.003822.
CAS
PubMed
Google Scholar
Garrido N, Meseguer M, Alvarez J, Simon C, Pellicer A, Remohi J: Relationship among standard semen parameters, glutathione peroxidase/glutathione reductase activity, and mRNA expression and reduced glutathione content in ejaculated spermatozoa from fertile and infertile men. Fertil Steril. 2004, 82 (Suppl 3): 1059-1066.
CAS
PubMed
Google Scholar
Aitken RJ: Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev. 1995, 7: 659-668. 10.1071/RD9950659.
CAS
PubMed
Google Scholar
Alvarez JG, Aitken RJ: Lipid Peroxidation in Human Spermatozoa. Studies on Men's Health and Fertility. Edited by: Agarwal A, Aitken RJ, Alvarez JG. 2012, New York: Humana Press, 119-130.
Google Scholar
Aitken RJ, Buckingham DW, Carreras A, Stewart Irvine D: Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function. Free Radic Biol Med. 1996, 21: 495-504. 10.1016/0891-5849(96)00119-0.
CAS
PubMed
Google Scholar
Smith TB, Dun MD, Smith ND, Curry BJ, Connaughton HS, Aitken RJ: The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J Cell Sci. 2013, 126: 1488-1497. 10.1242/jcs.121657.
CAS
PubMed
Google Scholar
Li T: The glutathione and thiol content of mammalian spermatozoa and seminal plasma. Biol Reprod. 1975, 12: 641-646. 10.1095/biolreprod12.5.641.
CAS
PubMed
Google Scholar
Manevich Y, Fisher AB: Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic Biol Med. 2005, 38: 1422-1432. 10.1016/j.freeradbiomed.2005.02.011.
CAS
PubMed
Google Scholar
Griveau JF, Dumont E, Renard P, Callegari JP, Le Lannou D: Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J Reprod Fertil. 1995, 103: 17-26. 10.1530/jrf.0.1030017.
CAS
PubMed
Google Scholar
Smith TB, Baker MA, Connaughton HS, Habenicht U, Aitken RJ: Functional deletion of Txndc2 and Txndc3 increases the susceptibility of spermatozoa to age-related oxidative stress. Free Radic Biol Med. 2013, 65: 872-881.
CAS
PubMed
Google Scholar
Uhlen M, Bjorling E, Agaton C, Szigyarto CAK, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, et al: A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteom. 2005, 4: 1920-1932. 10.1074/mcp.M500279-MCP200.
CAS
Google Scholar
Agarwal A, Makker K, Sharma R: Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008, 59: 2-11.
CAS
PubMed
Google Scholar
Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ: Antioxidants for male subfertility. Cochrane Database Syst Rev. 2011, 1: 1-102.
Google Scholar
Gharagozloo P, Aitken RJ: The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011, 26: 1628-1640. 10.1093/humrep/der132.
PubMed
Google Scholar
Menezo YJR, Hazout A, Panteix G, Robert F, Rollet J, Cohen-Bacrie P, Chapuis F, Clement P, Benkhalifa M: Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod BioMed Online. 2007, 14: 418-421. 10.1016/S1472-6483(10)60887-5.
CAS
PubMed
Google Scholar