Levine H, Jorgensen N, Martino-Andrade A, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;23(6):646–59.
Article
PubMed
PubMed Central
Google Scholar
Sermondade N, Faure C, Fezeu L, et al. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update. 2013;19(3):221–31.
Article
CAS
PubMed
Google Scholar
Dupont C, Faure C, Sermondade N, et al. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl. 2013;15(5):622–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dupont C, Faure C, Daoud F, et al. Metabolic syndrome and smoking are independent risk factors of male idiopathic infertility. Basic Clin Androl. 2019;29:9.
Article
PubMed
PubMed Central
Google Scholar
Amiri M, Ramezani TF. Potential adverse effects of female and male obesity on fertility: a narrative review. Int J Endocrinol Metab. 2020;18(3): e101776.
Article
PubMed
PubMed Central
Google Scholar
Elfassy Y, Bongrani A, Levy P, et al. Relationships between metabolic status, seminal adipokines, and reproductive functions in men from infertile couples. Eur J Endocrinol. 2020;182(1):67–77.
Article
CAS
PubMed
Google Scholar
Donkin I, Versteyhe S, Ingerslev LR, et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 2016;23(2):369–78.
Article
CAS
PubMed
Google Scholar
Lekka E, Hall J. Noncoding RNAs in disease. FEBS Lett. 2018;592(17):2884–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vienberg S, Geiger J, Madsen S, Dalgaard LT. MicroRNAs in metabolism. Acta Physiol (Oxf). 2017;219(2):346–61.
Article
CAS
Google Scholar
Gunes S, Arslan MA, Hekim GNT, Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet. 2016;33(5):553–69.
Article
PubMed
PubMed Central
Google Scholar
Song R, Hennig GW, Wu Q, Jose C, Zheng H, Yan W. Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci U S A. 2011;108(32):13159–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miska EA, Ferguson-Smith AC. Transgenerational inheritance: Models and mechanisms of non-DNA sequence-based inheritance. Science. 2016;354(6308):59–63.
Article
CAS
PubMed
Google Scholar
Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One. 2008;3(3):e1738.
Article
PubMed
PubMed Central
CAS
Google Scholar
Conine CC, Sun F, Song L, Rivera-Perez JA, Rando OJ. Small RNAs Gained during Epididymal Transit of Sperm Are Essential for Embryonic Development in Mice. Dev Cell. 2018;46(4):470–80 e3. https://doi.org/10.1016/j.devcel.2018.06.024. Epub 2018 Jul 26.
Browne JA, Leir SH, Eggener SE, Harris A. Region-specific microRNA signatures in the human epididymis. Asian J Androl. 2018;20(6):539–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lian J, Zhang X, Tian H, et al. Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol. 2009;7:13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang C, Yang C, Chen X, et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57(12):1722–31.
Article
CAS
PubMed
Google Scholar
Abu-Halima M, Hammadeh M, Schmitt J, et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril. 2013;99(5):1249-55-e16.
Article
CAS
Google Scholar
Abu-Halima M, Hammadeh M, Backes C, et al. Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertil Steril. 2014;102(4):989-97 e1.
Article
CAS
PubMed
Google Scholar
Ha TY. MicroRNAs in human diseases: from cancer to cardiovascular disease. Immune Netw. 2011;11(3):135–54.
Article
PubMed
PubMed Central
Google Scholar
Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13(4):239–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wlodarski A, Strycharz J, Wroblewski A, Kasznicki J, Drzewoski J, Sliwinska A. The Role of microRNAs in metabolic syndrome-related oxidative stress. Int J Mol Sci. 2020;21(18):6902.
Article
CAS
PubMed Central
Google Scholar
Grandjean V, Fourre S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep. 2015;5:18193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fullston T, Ohlsson Teague EM, Palmer NO, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27(10):4226–43.
Article
CAS
PubMed
Google Scholar
WHO. WHO Laboratory Manual for the Examination and Processing of Human Semen. Geneva: World Health Organization; 2010.
Google Scholar
Auger J, Jouannet P, Eustache F. Another look at human sperm morphology. Hum Reprod. 2016;31(1):10–23.
Article
CAS
PubMed
Google Scholar
Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.
Article
CAS
PubMed
Google Scholar
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salas-Huetos A, Blanco J, Vidal F, et al. Spermatozoa from normozoospermic fertile and infertile individuals convey a distinct miRNA cargo. Andrology. 2016;4(6):1028–36.
Article
CAS
PubMed
Google Scholar
Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril. 2014;102(1):213-22-e4.
Article
CAS
Google Scholar
de Castro BT, Ingerslev LR, Alm PS, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab. 2016;5(3):184–97.
Article
CAS
Google Scholar
Sedgeman LR, Michell DL, Vickers KC. Integrative roles of microRNAs in lipid metabolism and dyslipidemia. Curr Opin Lipidol. 2019;30(3):165–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho YK, Son Y, Kim SN, et al. MicroRNA-10a-5p regulates macrophage polarization and promotes therapeutic adipose tissue remodeling. Mol Metab. 2019;29:86–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saez F, Drevet JR. Dietary cholesterol and lipid overload: impact on male fertility. Oxid Med Cell Longev. 2019;2019:4521786.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eisenberg ML, Kim S, Chen Z, Sundaram R, Schisterman EF, Louis GM. The relationship between male BMI and waist circumference on semen quality: data from the LIFE study. Hum Reprod. 2015;30(2):493–4.
Article
PubMed
Google Scholar
Agarwal A, Barbarosie C, Ambar R, Finelli R. The impact of single- and double-strand DNA breaks in human spermatozoa on assisted reproduction. Int J Mol Sci. 2020;21(11):3882.
Article
CAS
PubMed Central
Google Scholar
Faure C, Dupont C, Baraibar MA, et al. In subfertile couple, abdominal fat loss in men is associated with improvement of sperm quality and pregnancy: a case-series. PLoS ONE. 2014;9(2):e86300.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim JS, Kim EJ, Lee S, et al. MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp Mol Med. 2019;51(1):1–10.
PubMed
PubMed Central
Google Scholar
Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 2019;38(1):53.
Article
PubMed
PubMed Central
Google Scholar
Li N, Wang K, Li PF. MicroRNA-34 family and its role in cardiovascular disease. Crit Rev Eukaryot Gene Expr. 2015;25(4):293–7.
Article
PubMed
Google Scholar
Al-Kafaji G, Al-Muhtaresh HA, Salem AH. Expression and clinical significance of miR-1 and miR-133 in pre-diabetes. Biomed Rep. 2021;14(3):33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaiou M, El Amri H, Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis. 2018;28(2):91–111.
Article
CAS
PubMed
Google Scholar
Yao C, Sun M, Yuan Q, et al. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3. Oncotarget. 2016;7(3):2201–19.
Article
PubMed
PubMed Central
Google Scholar
Li X, Teng C, Ma J, et al. miR-19 family: a promising biomarker and therapeutic target in heart, vessels and neurons. Life Sci. 2019;232: 116651.
Article
CAS
PubMed
Google Scholar
Kataoka M, Wang DZ. Noncoding RNAs in Cardiovascular Disease. In: Nakanishi T, Markwald RR, Baldwin HS, Keller BB, Srivastava D, Yamagishi H, editors. Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology. Tokyo: Springer; 2016. p. 313–7. https://doi.org/10.1007/978-4-431-54628-3.
Bork-Jensen J, Scheele C, Christophersen DV, et al. Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: results from studies of twins with and without type 2 diabetes. Diabetologia. 2015;58(2):363–73.
Article
CAS
PubMed
Google Scholar
Nixon B, De Iuliis GN, Dun MD, Zhou W, Trigg NA, Eamens AL. Profiling of epididymal small non-protein-coding RNAs. Andrology. 2019;7(5):669–80.
CAS
PubMed
Google Scholar
Reilly JN, McLaughlin EA, Stanger SJ, et al. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep. 2016;6:31794.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cannarella R, Barbagallo F, Crafa A, La Vignera S, Condorelli RA, Calogero AE. Seminal plasma transcriptome and proteome: towards a molecular approach in the diagnosis of idiopathic male infertility. Int J Mol Sci. 2020;21(19):7308.
Article
CAS
PubMed Central
Google Scholar
Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182–93.
CAS
PubMed
Google Scholar
Yuan S, Schuster A, Tang C, et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143(4):635–47.
CAS
PubMed
PubMed Central
Google Scholar
Yuan S, Tang C, Zhang Y, et al. mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open. 2015;4(2):212–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Natt D, Ost A. Male reproductive health and intergenerational metabolic responses from a small RNA perspective. J Intern Med. 2020;288(3):305–20.
Article
CAS
PubMed
Google Scholar
Soubry A. POHaD: why we should study future fathers. Environ Epigenet. 2018;4(2):dvy007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Houfflyn S, Matthys C, Soubry A. male obesity: epigenetic origin and effects in sperm and offspring. Curr Mol Biol Rep. 2017;3(4):288–96.
Article
PubMed
PubMed Central
Google Scholar
Fullston T, Ohlsson-Teague EM, Print CG, Sandeman LY, Lane M. Sperm microRNA content is altered in a mouse model of male obesity, but the same suite of microRNAs Are not altered in offspring’s sperm. PLoS ONE. 2016;11(11):e0166076.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dupont C, Kappeler L, Saget S, Grandjean V, Levy R. Role of miRNA in the transmission of metabolic diseases associated with paternal diet-induced obesity. Front Genet. 2019;10:337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schjenken JE, Robertson SA. seminal fluid signalling in the female reproductive tract: implications for reproductive success and offspring health. Adv Exp Med Biol. 2015;868:127–58.
Article
PubMed
Google Scholar
Morgan HL, Watkins AJ. The influence of seminal plasma on offspring development and health. Semin Cell Dev Biol. 2020;97:131–7.
Article
PubMed
Google Scholar
Chan J, Nugent B, Morrison K, Jašarević E, Bhanu N, Garcia B, Baleet T. Epididymal glucocorticoid receptors promote intergenerational transmission of paternal stress. bioRxiv. 2018. https://doi.org/10.1101/321976.