Albers P, Albrecht W, Algaba F, Bokemeyer C, Cohn-Cedemark G, Fizazi K, et al. Guidelines on testicular cancer: 2015 update. Eur Urol. 2015;68:1054–68.
Article
Google Scholar
Calabrò F, Albers P, Bokemeyer C, Martin C, Einhorn LH, Horwich A, et al. The contemporary role of chemotherapy for advanced testis cancer: a systematic review of the literature. Eur Urol. 2012;61:1212–21.
Article
Google Scholar
Fung C, Fossa SD, Williams A, Travis LB. Long-term morbidity of testicular cancer treatment. Urol Clin North Am. 2015;42:393–408.
Article
Google Scholar
Cvancarova M, Samuelsen SO, Magelssen H, Fossa SD. Reproduction rates after cancer treatment: experience from the Norwegian radium hospital. J Clin Oncol. 2009;27:334–43.
Article
Google Scholar
Williams DH, Karpman E, Sander JC, Spiess PE, Pisters LL, Lipshultz LI. Pretreatment semen parameters in men with cancer. J Urol. 2009;181:736–40.
Article
Google Scholar
Rabaça A, Sousa M, Alves M, Oliveira PF, Sá R. Novel drug therapies for fertility preservation in men undergoing chemotherapy: clinical relevance of protector agents. Curr Med Chem. 2015;22:3347–69.
Article
Google Scholar
Chen AY, Liu LF. DNA topoisomerases: essential enzymes and lethal targets. Ann Rev Pharmacol Toxicol. 1994;34:191–218.
Article
CAS
Google Scholar
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7:573–84.
Article
CAS
Google Scholar
Froelich-Ammon SJ, Osheroff N. Topoisomerase poisons: harnessing the dark side of enzyme mechanism. J Biol Chem. 1995;270:21429–32.
Article
CAS
Google Scholar
Auger J, Sermondade N, Eustache F. Semen quality of 4480 young cancer and systematic disease patients: baseline data and clinical considerations. Basic Clin Androl. 2016;26(3). https://doi.org/10.1186/s12610-016-0031-x.
Caponecchia L, Cimino G, Sacchetto R, Fiori C, Sebastianelli A, Salacone P, et al. Do malignant diseases affetc semen quality? Sperm parameters of men with cancer. Andrologia. 2016;48:333–40.
Article
CAS
Google Scholar
Santo L, Siu KT, Raje N. Targeting cyclin-dependent kinases and cell cycle progression in human cancers. Semin Oncol. 2015;42:788–800.
Article
CAS
Google Scholar
Reznikov A. Hormonal impact on tumor growth and progression. Exp Oncol. 2015;37:162–72.
CAS
PubMed
Google Scholar
Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–48.
Article
CAS
Google Scholar
Fuchs-Tarlocsky V. Role of antioxidants in cancer therapy. Nutrition. 2013;29:15–21.
Article
Google Scholar
Thyagarajan A, Sahu RP. Potential contributions of antioxidants to cancer therapy: immunomodulation and radiosensitization. Integr Cancer Ther. 2018;17:2010–6.
Article
Google Scholar
Drisko JA, Chapman J, Hunter VJ. The use of antioxidant therapies during chemotherapy. Gynecol Oncol. 2003;88:434–9.
Article
CAS
Google Scholar
Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Rad Biol Med. 1989;6:593–7.
Article
CAS
Google Scholar
Bonanomi L, Gazzaniga A. Toxicological, pharmacokinetic and metabolic studies on acetylcysteine. Eur J Respir Dis Suppl. 1980;111:45–51.
CAS
PubMed
Google Scholar
Johnston RE, Hawkins HC, Weikel JH Jr. The toxicity of N-acetylcysteine in laboratory animals. Semin Oncol. 1983;10(1Suppl1):17–24.
CAS
PubMed
Google Scholar
Cai T, Fassina G, Morini M, Aluigi MG, Masiello L, Fontanini G, et al. N-acetylcysteine inhibits endothelial cell invasion and angiogenesis. Lab Investig. 1999;79:1151–9.
CAS
PubMed
Google Scholar
Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J mens Health. 2014;32(1):17.
Article
Google Scholar
Bisht S, Faiq M, Tolahunase M, Dada R. Oxidative stress and male infertility. Nat Rev Urol. 2017;14:470–85.
Article
CAS
Google Scholar
Agarwal A, Nallella KP, Allamaneni SSR, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod BioMed Online. 2004;8:616–27.
Article
CAS
Google Scholar
Ciftci H, Verit A, Savas M, Yeni E, Erel O. Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant status. Urology. 2009;74:73–6.
Article
Google Scholar
Kefer JC, Agarwal A, Sabanegh E. Role of antioxidants in the treatment of male infertility. Int J Urol. 2009;16:449–57.
Article
CAS
Google Scholar
Stephenson W, Poirier SM, Rubin L, Einhorn LH. Evaluation of reproductive capacity in germ cell tumor patients following treatment with cisplatin, etoposide, and bleomycin. J Clin Oncol. 1995;13:2278–80.
Article
CAS
Google Scholar
De Mas P, Daudin M, Vincent MC, Bourrouillou G, Calvas P, Mieusset R, et al. Increased aneuploidy in spermatozoa from testicular tumour patients after chemotherapy with cisplatin, etoposide and bleomycin. Hum Reprod. 2001;16:1204–8.
Article
Google Scholar
Ghezzi M, Berretta M, Bottacin A, Palego P, Sartini B, Cosci I, et al. Impact of Bep or carboplatin chemotherapy on testicular function and sperm nucleus of subjects with testicular germ cell tumor. Front Pharmacol. 2016;7:122.
Article
Google Scholar
Bagheri-Sereshki N, Hales BF, Robaire B. The effects of chemotherapeutic agents, bleomycin, etoposide, and cisplatin, on chromatin remodeling in male rat germ cells. Biol Reprod. 2016;94:81.
Article
Google Scholar
Russell LB, Hunsicker PR, Johnson DK, Shelby MD. Unlike other chemicals, etoposide (a topoisomerase-II inhibitor) produces peak mutagenicity in primary spermatocytes of the mouse. Mutat Res. 1998;400:279–86.
Article
CAS
Google Scholar
Russell LB, Hunsicker PR, Hack AM, Ashley T. Effect of the topoisomerase-II inhibitor etoposide on meiotic recombination in male mice. Mutat Res. 2000;464:201–12.
Article
CAS
Google Scholar
Matulis S, Handel MA. Spermatocyte responses in vitro to induced DNA damage. Mol Reprod Dev. 2006;73:1061–72.
Article
CAS
Google Scholar
Marchetti F, Pearson FS, Bishop JB, Wyrobek AJ. Etoposide induces chromosomal abnormalities in mouse spermatocytes and stem cell spermatogonia. Hum Reprod. 2006;21:888–95.
Article
CAS
Google Scholar
Okada FK, Stumpp T, Miraglia SM. Carnitine reduces testicular damage in rats treated with etoposide in the prepubertal phase. Cell Tiss Res. 2009;337:269–80.
Article
CAS
Google Scholar
Reddy KP, Madhu P, Reddy PS. Protective effects of resveratrol against cisplatin-induced testicular and epididymal toxicity in rats. Food Chem Toxicol. 2016;91:65–72.
Article
CAS
Google Scholar
Afsar T, Razak S, Khan MR, Almajwal A. Acacia hydaspica ethyl acetate extract protects against cisplatin-induced DNA damage, oxidative stress and testicular injuries in adult male rats. BMC Cancer. 2017;17:883.
Article
Google Scholar
World Health Organization (WHO). WHO laboratory manual for the examination and processing of human semen. Geneva: WHO Press; 2010.
Google Scholar
Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4:303–6.
Article
Google Scholar
Joel S. The clinical pharmacology of etoposide: an update. Cancer Treat Rev. 1996;22:179–221.
Article
CAS
Google Scholar
Dorato MA, Engelhardt JA. The no-observed-adverse-effect-level in drug safety evaluations: use, issues, and definition(s). Reg Toxicol Pharmacol. 2005;42:265–74.
Article
CAS
Google Scholar
Slevin ML. The clinical pharmacology of etoposide. Cancer. 1991;67(1 Suppl):319–29.
Article
CAS
Google Scholar
Bucar S, Goncalves A, Rocha E, Barros A, Sousa M, Sá R. DNA fragmentation in human sperm after magnetic-activated cell sorting. J Assist Reprod Genet. 2015;32:147–54.
Article
Google Scholar
Sá R, Cunha M, Rocha E, Barros A, Sousa M. Sperm DNA fragmentation is related to sperm morphological staining patterns. Reprod BioMedicine Online. 2015;31:506–15.
Article
Google Scholar
Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health, Part C. 2009;27:120–39.
Article
CAS
Google Scholar
Vorilhon S, Brugnon F, Kocer A, DEollet S, Bourgne C, Berger M, et al. Accuracy of human sperm DNA oxidation quantification and threshold determination using an 8-OHdG immuno-detection assay. Hum Reprod. 2018;33:553–62.
Article
CAS
Google Scholar
Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62:220–41.
Article
Google Scholar
Magelssen H, Brydoy M, Fossa SD. The effects of cancer and cancer treatments on male reproductive function. Nat Clin Pract Urol. 2006;3:312–22.
Article
CAS
Google Scholar
Tournaye H, Dohle GR, Barratt CLR. Fertility preservation in men with cancer. Lancet. 2014;384:1295–301.
Article
Google Scholar
Dhouib IE, Jallouli M, Annabi A, Gharbi N, Elfazaa S, Lasram MM. A minireview on N-acetylcysteine: an old drug with new approaches. Life Sci. 2016;151:359–63.
Article
Google Scholar
Liu M, Pelling JC, Ju J, Chu E, Brash DE. Antioxidant action via p53-mediated apoptosis. Cancer Res. 1998;58:1723–9.
CAS
PubMed
Google Scholar
Lohrke B, Xu J, Weitzel JM, Krüger B, Goldammer T, Viergutz T. N-acetylcysteine impairs survival of luteal cells through mitochondrial dysfunction. Cytometry Part A. 2010;77:310–20.
Article
Google Scholar
Sagara J, Bannai S, Shikano N, Makino N. Conflicting effects of N-acetylcysteine on purified neurons derived from rat cortical culture. Neuroreport. 2010;21:416–21.
Article
Google Scholar
Meistrich ML. Male gonadal toxicity. Pediatr Blood Cancer. 2009;53:261–6.
Article
Google Scholar
Zini A, Gabriel MS, Baazeem A. Antioxidants and sperm DNA damage: a clinical perpective. J Assist Reprod Genet. 2009;26:427–32.
Article
Google Scholar