Hadziselimovic F. Cryptorchidism. Ultrastructure of normal and cryptorchid testis development. Adv Anat Embryol Cell Biol. 1977;53:3–71.
CAS
PubMed
Google Scholar
Forest MG, Sizonenko PC, Cathiard AM, Bertrand J. Hypophyso-gonadal function in humans during the first year of life. Evidence for testicular activity in early infancy. J Clin Invest. 1974;53:819–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winter JSD, Hughes IA, Reyes FI, Faiman C. Pituitary gonadal relations in infancy: II. Patterns of serum gonadal steroid concentrations in man from birth to two years of age. J Clin Endocrinol Metab. 1976;42:679–86.
Article
CAS
PubMed
Google Scholar
Corbier P, Edwards DA, Roffi J. The neonatal testosterone surge: a comparative study. Arch Int Physiol Biochim Biophys. 1992;100:127–31.
CAS
PubMed
Google Scholar
Cortes D, Müller J, Skakkebaek NE. Proliferation of Sertoli cells during development of the human testis assessed by stereological methods. Int J Androl. 1987;10:589–96.
Article
CAS
PubMed
Google Scholar
Hadziselimovic F, Herzog B. The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet. 2001;358:1156–7.
Article
CAS
PubMed
Google Scholar
Andersson AM, Skakkebaek NE. Serum inhibin B levels during male childhood and puberty. Mol Cell Endocrinol. 2001;180:103–7.
Article
CAS
PubMed
Google Scholar
Illingworth PJ, Groome NP, Byrd W, Rainey WE, McNeilly AS, Mather JP, et al. Inhibin-B: a likely candidate for the physiologically important form of inhibin in men. J Clin Endocrinol Metab. 1996;81:1321–5.
CAS
PubMed
Google Scholar
Raivio T, Dunkel L. Inverse relationship between serum inhibin B and FSH levels in prepubertal boys with cryptorchidism. Pediatr Res. 1999;46:496–500.
Article
CAS
PubMed
Google Scholar
Hadziselimovic F, Emmons LR, Buser MW. A diminished postnatal surge of Ad spermatogonia in cryptorchid infants is additional evidence for hypogonadotropic hypogonadism. Swiss Med Wkly. 2004;134:381–4.
PubMed
Google Scholar
Hadziselimovic F, Zivkovic D, Bica DTG, Emmons LR. The importance of mini-puberty for fertility in cryptorchidism. J Urol. 2005;174:1536–1539-1539.
Article
PubMed
Google Scholar
Hadziselimovic F, Höcht B. Testicular histology related to fertility outcome and postpubertal hormone status in cryptorchidism. Klin Padiatr. 2008;220:302–7.
Article
CAS
PubMed
Google Scholar
Zivkovic D, Hadziselimovic F. Development of Sertoli Cells during Mini-Puberty in Normal and Cryptorchid Testes. Urol Int. 2009;82:89–91.
Article
PubMed
Google Scholar
Hamdi SM, Almont T, Galinier P, Mieusset R, Thonneau P. Altered secretion of Sertoli cells hormones in 2-year-old prepubertal cryptorchid boys: a cross-sectional study. Andrology. 2017;5:783–9.
Article
CAS
PubMed
Google Scholar
Byrd W, Bennett MJ, Carr BR, Dong Y, Wians F, Rainey W. Regulation of Biologically Active Dimeric Inhibin A and B From Infancy to Adulthood in the Male. J Clin Endocrinol Metab. 1998;83:2849–54.
Article
CAS
PubMed
Google Scholar
Andersson AM, Toppari J, Haavisto AM, Petersen JH, Simell T, Simell O, et al. Longitudinal reproductive hormone profiles in infants: peak of inhibin B levels in infant boys exceeds levels in adult men. J Clin Endocrinol Metab. 1998;83:675–81.
CAS
PubMed
Google Scholar
Bergadá I, Rojas G, Ropelato G, Ayuso S, Bergadá C, Campo S. Sexual dimorphism in circulating monomeric and dimeric inhibins in normal boys and girls from birth to puberty. Clin Endocrinol. 1999;51:455–60.
Article
Google Scholar
Borgato S, Giacchero R, Morpurgo P, Persani L, Beck-Peccoz P. Physiological secretion of gonadotropins and inhibin B during the first year of postnatal life in both sexes. In: 5th European Congress of Endocrinology. Turin, Italy: Abstract O-079; 2001.
Google Scholar
Longui CA, Arnhold IJ, Mendonca BB, D’Osvaldo AF, Bloise W. Serum inhibin levels before and after gonadotropin stimulation in cryptorchid boys under age 4 years. J Pediatr Endocrinol Metab. 1998;11:687–92.
Article
CAS
PubMed
Google Scholar
Kubini K, Zachmann M, Albers N, Hiort O, Bettendorf M, Wölfle J, et al. Basal inhibin B and the testosterone response to human chorionic gonadotropin correlate in prepubertal boys. J Clin Endocrinol Metab. 2000;85:134–8.
CAS
PubMed
Google Scholar
Christiansen P, Andersson A-M, Skakkebaek NE, Juul A. Serum inhibin B, FSH, LH and testosterone levels before and after human chorionic gonadotropin stimulation in prepubertal boys with cryptorchidism. Eur J Endocrinol. 2002;147:95–101.
Article
CAS
PubMed
Google Scholar
Irkilata HC, Yildirim I, Onguru O, Aydur E, Musabak U, Dayanc M. The influence of orchiopexy on serum inhibin B level: relationship with histology. J Urol. 2004;172(6 Pt 1):2402–5. discussion 2405
Article
PubMed
Google Scholar
Barthold JS, Manson J, Regan V, Si X, Hassink SG, Coughlin MT, et al. Reproductive hormone levels in infants with cryptorchidism during postnatal activation of the pituitary-testicular axis. J Urol. 2004;172(4 Pt 2):1736–41. discussion 1741.
Article
CAS
PubMed
Google Scholar
Kollin C, Stukenborg JB, Nurmio M, Sundqvist E, Gustafsson T, Söder O, et al. Boys with undescended testes: endocrine, volumetric and morphometric studies on testicular function before and after orchidopexy at nine months or three years of age. J Clin Endocrinol Metab. 2012;97:4588–95.
Article
CAS
PubMed
Google Scholar
Cortes D, Clasen-Linde E, Hutson JM, Li R, Thorup J. The Sertoli cell hormones inhibin-B and anti Müllerian hormone have different patterns of secretion in prepubertal cryptorchid boys. J Pediatr Surg. 2016;51:475–80.
Article
PubMed
Google Scholar
Verkauskas G, Malcius D, Eidukaite A, Vilimas J, Dasevicius D, Bilius V, et al. Prospective study of histological and endocrine parameters of gonadal function in boys with cryptorchidism. J Pediatr Urol. 2016;12:238.e1–6.
Article
Google Scholar
Hadziselimovic F, Höcht B, Herzog B, Girard J. Does Long Term Treatment with Buserelin Improve the Fertility Chances of Cryptorchid Testes? In: Labrie F, Belanger A, Dupont A, editors. LH-RH and its Analogues. Amsterdam: Elsevier; 1984. p. 457.
Google Scholar
Hadziselimovic F, Huff D, Duckett J, Herzog B, Elder J, Snyder H, et al. Treatment of cryptorchidism with low doses of buserelin over a 6-months period. Eur J Pediatr. 1987;146:S56–8. https://doi.org/10.1007/BF00452876.
Article
PubMed
Google Scholar
Zivkovic D, Bica DTG, Hadziselimovic F. Relationship between adult dark spermatogonia and secretory capacity of Leydig cells in cryptorchidism. BJU Int. 2007;100:1147–9.
PubMed
Google Scholar
Hadziselimovic F, Gegenschatz-Schmid K, Verkauskas G, Demougin P, Bilius V, Dasevicius D, et al. GnRHa Treatment of Cryptorchid Boys Affects Genes Involved in Hormonal Control of the HPG Axis and Fertility. Sex Dev. 2017;11(3):126–36.
Article
PubMed
Google Scholar
Gegenschatz-Schmid K, Verkauskas G, Demougin P, Bilius V, Dasevicius D, Stadler MB, et al. DMRTC2, PAX7, BRACHYURY/T and TERT Are Implicated in Male Germ Cell Development Following Curative Hormone Treatment for Cryptorchidism-Induced Infertility. Genes (Basel). 2017;8(10):267–83.
Bica DT, Hadziselimovic F. The behavior of epididymis, processus vaginalis and testicular descent in cryptorchid boys treated with buserelin. Eur J Pediatr. 1993;152:S38–42. https://doi.org/10.1007/BF02125436.
Article
PubMed
Google Scholar
Hadziselimovic F, Gegenschatz-Schmid K, Verkauskas G, Docampo-Garcia MJ, Demougin P, Bilius V, et al. Gene expression changes underlying idiopathic central hypogonadism in cryptorchidism with defective mini-puberty. Sex Dev. 2016;10:136–46.
Article
CAS
PubMed
Google Scholar
Seguchi H, Hadziselimovic F. Ultramicroscopic studies on the seminiferous tubule in children from birth to puberty. I. Spermatogonia development. Verh Anat Ges. 1974;68:133–48.
CAS
PubMed
Google Scholar
Chalmel F, Lardenois A, Evrard B, Mathieu R, Feig C, Demougin P, et al. Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility. Hum Reprod. 2012;27:3233–48.
Article
CAS
PubMed
Google Scholar
Roberts V, Meunier H, Sawchenko PE, Vale W. Differential production and regulation of inhibin subunits in rat testicular cell types. Endocrinology. 1989;125:2350–9.
Article
CAS
PubMed
Google Scholar
Anawalt BD, Bebb RA, Matsumoto AM, Groome NP, Illingworth PJ, McNeilly AS, et al. Serum inhibin B levels reflect Sertoli cell function in normal men and men with testicular dysfunction. J Clin Endocrinol Metab. 1996;81:3341–5.
CAS
PubMed
Google Scholar
Majdic G, McNeilly AS, Sharpe RM, Evans LR, Groome NP, Saunders PT. Testicular expression of inhibin and activin subunits and follistatin in the rat and human fetus and neonate and during postnatal development in the rat. Endocrinology. 1997;138:2136–47.
Article
CAS
PubMed
Google Scholar
de Kretser DM, Buzzard JJ, Okuma Y, O’Connor AE, Hayashi T, Lin S-Y, et al. The role of activin, follistatin and inhibin in testicular physiology. Mol Cell Endocrinol. 2004;225:57–64.
Article
CAS
PubMed
Google Scholar
Wang H, Yuan Q, Sun M, Niu M, Wen L, Fu H, et al. BMP6 Regulates Proliferation and Apoptosis of Human Sertoli Cells Via Smad2/3 and Cyclin D1 Pathway and DACH1 and TFAP2A Activation. Sci Rep. 2017;7:45298.
Article
PubMed
PubMed Central
Google Scholar
Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development. 2004;131:3627–36.
Article
CAS
PubMed
Google Scholar
Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci. 2007;104:16558–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schepers G, Wilson M, Wilhelm D, Koopman P. SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro. J Biol Chem. 2003;278:28101–8.
Article
CAS
PubMed
Google Scholar
Chaboissier M-C, Kobayashi A, Vidal VIP, Lützkendorf S, van de Kant HJG, Wegner M, et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development. 2004;131:1891–901.
Article
CAS
PubMed
Google Scholar
Walker WH, Fucci L, Habener JF. Expression of the gene encoding transcription factor cyclic adenosine 3’,5’-monophosphate (cAMP) response element-binding protein (CREB): regulation by follicle-stimulating hormone-induced cAMP signaling in primary rat Sertoli cells. Endocrinology. 1995;136:3534–45. https://doi.org/10.1210/endo.136.8.7628390.
Article
CAS
PubMed
Google Scholar
Fix C, Jordan C, Cano P, Walker WH. Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells. Proc Natl Acad Sci. 2004;101:10919–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann M-C, Dym M. Gdnf Upregulates c-Fos Transcription via the Ras/Erk1/2 Pathway to Promote Mouse Spermatogonial Stem Cell Proliferation. Stem Cells. 2008;26:266–78. https://doi.org/10.1634/stemcells.2007-0436.
Article
CAS
PubMed
Google Scholar
Brehm R, Marks A, Rey R, Kliesch S, Bergmann M, Steger K. Altered expression of connexins 26 and 43 in Sertoli cells in seminiferous tubules infiltrated with carcinoma-in-situ or seminoma. J Pathol. 2002;197:647–53.
Article
CAS
PubMed
Google Scholar
Defamie N, Berthaut I, Mograbi B, Chevallier D, Dadoune J-P, Fénichel P, et al. Impaired gap junction connexin43 in Sertoli cells of patients with secretory azoospermia: a marker of undifferentiated Sertoli cells. Lab Investig. 2003;83:449–56.
Article
CAS
PubMed
Google Scholar
Roger C, Mograbi B, Chevallier D, Michiels JF, Tanaka H, Segretain D, et al. Disrupted traffic of connexin 43 in human testicular seminoma cells: overexpression of Cx43 induces membrane location and cell proliferation decrease. J Pathol. 2004;202:241–6.
Article
CAS
PubMed
Google Scholar
Kotula-Balak M, Hejmej A, Sadowska J, Bilinska B. Connexin 43 expression in human and mouse testes with impaired spermatogenesis. Eur J Histochem. 2007;51:261–8.
CAS
PubMed
Google Scholar
Steiner M, Weipoltshammer K, Viehberger G, Meixner E-M, Lunglmayr G, Schöfer C. Immunohistochemical expression analysis of Cx43, Cx26, c-KIT and PlAP in contralateral testis biopsies of patients with non-seminomatous testicular germ cell tumor. Histochem Cell Biol. 2011;135:73–81.
Article
CAS
PubMed
Google Scholar
Dubé E, Dufresne J, Chan PTK, Cyr DG. Epidermal growth factor regulates connexin 43 in the human epididymis: role of gap junctions in azoospermia. Hum Reprod. 2012;27:2285–96.
Article
PubMed
Google Scholar
Haverfield JT, Meachem SJ, O’Bryan MK, McLachlan RI, Stanton PG. Claudin-11 and connexin-43 display altered spatial patterns of organization in men with primary seminiferous tubule failure compared with controls. Fertil Steril. 2013;100:658–66.
Article
CAS
PubMed
Google Scholar
Decrouy X, Gasc J-M, Pointis G, Segretain D. Functional characterization of Cx43 based gap junctions during spermatogenesis. J Cell Physiol. 2004;200:146–54.
Article
CAS
PubMed
Google Scholar
Fritz IB, Burdzy K, Sétchell B, Blaschuk O. Ram rete testis fluid contains a protein (clusterin) which influences cell-cell interactions in vitro. Biol Reprod. 1983;28:1173–88.
Article
CAS
PubMed
Google Scholar
Thacker S, Yadav SP, Sharma RK, Kashou A, Willard B, Zhang D, et al. Evaluation of sperm proteins in infertile men: a proteomic approach. Fertil Steril. 2011;95:2745–8.
Article
CAS
PubMed
Google Scholar
Salehi M, Akbari H, Heidari MH, Molouki A, Murulitharan K, Moeini H, et al. Correlation between human clusterin in seminal plasma with sperm protamine deficiency and DNA fragmentation. Mol Reprod Dev. 2013;80:718–24.
CAS
PubMed
Google Scholar
Riaz MA, Stammler A, Borgers M, Konrad L. Clusterin signals via ApoER2/VLDLR and induces meiosis of male germ cells. Am J Transl Res. 2017;9:1266–76.
PubMed
PubMed Central
Google Scholar
Shapiro E, Huang H, Masch RJ, McFadden DE, Wu X-R, Ostrer H. Immunolocalization of androgen receptor and estrogen receptors alpha and beta in human fetal testis and epididymis. J Urol. 2005;174(4 Pt 2):1695–8. discussion 1698
Article
CAS
PubMed
Google Scholar
Berensztein EB, Baquedano MS, Gonzalez CR, Saraco NI, Rodriguez J, Ponzio R, et al. Expression of Aromatase, Estrogen Receptor α and β, Androgen Receptor, and Cytochrome P-450scc in the Human Early Prepubertal Testis. Pediatr Res. 2006;60:740–4.
Article
CAS
PubMed
Google Scholar
Chemes HE, Rey RA, Nistal M, Regadera J, Musse M, González-Peramato P, et al. Physiological androgen insensitivity of the fetal, neonatal, and early infantile testis is explained by the ontogeny of the androgen receptor expression in Sertoli cells. J Clin Endocrinol Metab. 2008;93:4408–12.
Article
CAS
PubMed
Google Scholar
Boukari K, Meduri G, Brailly-Tabard S, Guibourdenche J, Ciampi ML, Massin N, et al. Lack of Androgen Receptor Expression in Sertoli Cells Accounts for the Absence of Anti-Mullerian Hormone Repression during Early Human Testis Development. J Clin Endocrinol Metab. 2009;94:1818–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blok LJ, Mackenbach P, Trapman J, Themmen AP, Brinkmann AO, Grootegoed JA. Follicle-stimulating hormone regulates androgen receptor mRNA in Sertoli cells. Mol Cell Endocrinol. 1989;63:267–71.
Article
CAS
PubMed
Google Scholar
Blok LJ, Themmen AP, Peters AH, Trapman J, Baarends WM, Hoogerbrugge JW, et al. Transcriptional regulation of androgen receptor gene expression in Sertoli cells and other cell types. Mol Cell Endocrinol. 1992;88:153–64.
Article
CAS
PubMed
Google Scholar
Li R, Vannitamby A, Meijer J, Southwell B, Hutson J. Postnatal germ cell development during mini-puberty in the mouse does not require androgen receptor: implications for managing cryptorchidism. J Urol. 2015;193:1361–7.
Article
CAS
PubMed
Google Scholar
Dym M, Kokkinaki M, He Z. Spermatogonial stem cells: Mouse and human comparisons. Birth Defects Res Part C - Embryo Today Rev. 2009;87:27–34.
Article
CAS
Google Scholar
Hermann BP, Sukhwani M, Hansel MC, Orwig KE. Spermatogonial stem cells in higher primates: Are there differences from those in rodents? Reproduction. 2010;139:479–93.
Article
CAS
PubMed
Google Scholar
Anderson RA, Fulton N, Cowan G, Coutts S, Saunders PT. Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Dev Biol. 2007;7:136.
Article
PubMed
PubMed Central
Google Scholar
Marchetti C, Hamdane M, Mitchell V, Mayo K, Devisme L, Rigot JM, et al. Immunolocalization of inhibin and activin alpha and betaB subunits and expression of corresponding messenger RNAs in the human adult testis. Biol Reprod. 2003;68:230–5.
Article
CAS
PubMed
Google Scholar
Soriano-Guillen L, Mitchell V, Carel J-C, Barbet P, Roger M, Lahlou N. Activating mutations in the luteinizing hormone receptor gene: a human model of non-follicle-stimulating hormone-dependent inhibin production and germ cell maturation. J Clin Endocrinol Metab. 2006;91:3041–7.
Article
CAS
PubMed
Google Scholar
Zeng Z, Shaffer JR, Wang X, Feingold E, Weeks DE, Lee M, et al. Genome-wide association studies of pit-and-fissure- and smooth-surface caries in permanent dentition. J Dent Res. 2013;92:432–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferguson CA, Tucker AS, Christensen L, Lau AL, Matzuk MM, Sharpe PT. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev. 1998;12:2636–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Francavilla S, D’Abrizio P, Rucci N, Silvano G, Properzi G, Straface E, et al. Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis. J Clin Endocrinol Metab. 2000;85:2692–700.
Article
CAS
PubMed
Google Scholar
Zhou XC, Wei P, Hu ZY, Gao F, Zhou RJ, Liu YX. Role of Fas/FasL genes in azoospermia or oligozoospermia induced by testosterone undecanoate in rhesus monkey. Acta Pharmacol Sin. 2001;22:1028–33.
CAS
PubMed
Google Scholar
Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol. 1999;9:1441–7.
Article
CAS
PubMed
Google Scholar
Yang Y, Han C. GDNF stimulates the proliferation of cultured mouse immature Sertoli cells via its receptor subunit NCAM and ERK1/2 signaling pathway. BMC Cell Biol. 2010;11:78.
Article
PubMed
PubMed Central
Google Scholar
Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev. 2002;113:29–39.
Article
CAS
PubMed
Google Scholar
Chen L-Y, Willis WD, Eddy EM. Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proc Natl Acad Sci. 2016;113:1829–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joseph DR. Structure, function, and regulation of androgen-binding protein/sex hormone-binding globulin. Vitam Horm. 1994;49:197–280.
Article
CAS
PubMed
Google Scholar
Jeyaraj DA, Grossman G, Weaver C, Petrusz P. Dynamics of testicular germ cell proliferation in normal mice and transgenic mice overexpressing rat androgen-binding protein: a flow cytometric evaluation. Biol Reprod. 2002;66:877–85.
Article
CAS
PubMed
Google Scholar
Hammond GL, Bocchinfuso WP. Sex hormone-binding globulin: gene organization and structure/function analyses. Horm Res. 1996;45:197–201.
Article
CAS
PubMed
Google Scholar
Selva DM, Hammond GL. Human sex hormone-binding globulin is expressed in testicular germ cells and not in sertoli cells. Horm Metab Res. 2006;38:230–5.
Article
CAS
PubMed
Google Scholar