Working PK. Male reproductive toxicology: comparison of the human to animal models. Environ Health Perspect. 1988;77:37–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, et al. World Health Organization reference values for human semen characteristics*‡. Hum Reprod Update. Oxford University Press. 2010;16:231–45.
Article
Google Scholar
Sharpe RM. Environmental/lifestyle effects on spermatogenesis. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365:1697–712.
Article
CAS
Google Scholar
Bonde JP. Male reproductive organs are at risk from environmental hazards. Asian J Androl. 2010;12:152–6.
Article
CAS
PubMed
Google Scholar
Sharpe RM. Sperm counts and fertility in men: a rocky road ahead. Science & society series on sex and science. EMBO Rep. 2012;13:398–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharpe RM. Lifestyle and environmental contribution to male infertility. Br Med Bull Narnia. 2000;56:630–42.
Article
CAS
Google Scholar
Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009*. Fertil Steril. 2009;92:1520–4.
Article
CAS
PubMed
Google Scholar
Jungwirth A, Diemer T, Dohle G, Kopa Z, Krausz C, Tournaye H. Male Infertility EAU Guidelines on; 2016.
Google Scholar
Osser S, Liedholm P, Ranstam J. Depressed semen quality: a study over two decades. Arch Androl. 1984;12:113–6.
Article
CAS
PubMed
Google Scholar
James WH. Secular trend in reported sperm counts. Andrologia. 1980;12:381–8.
Article
CAS
PubMed
Google Scholar
Menkveld R, Van Zyl JA, Kotze TJW, Joubert G. Possible changes in male fertility over a 15-year period. Arch Androl. 1986;17:143–4.
Article
CAS
PubMed
Google Scholar
Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305:609–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrow S. Falling sperm quality: fact or fiction? BMJ. 1994;309:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cocuzza M, Esteves SC. Shedding light on the controversy surrounding the temporal decline in human sperm counts: a systematic review. Sci World J. 2014;2014:1–9.
Article
Google Scholar
Fisch H, Goluboff ET. Geographic variations in sperm counts: a potential cause of bias in studies of semen quality. Fertil Steril. 1996;65:1044–6.
Article
CAS
PubMed
Google Scholar
Olsen GW, Bodner KM, Ramlow JM, Ross CE, Lipshultz LI. Have sperm counts been reduced 50 percent in 50 years? A statistical model revisited. Fertil Steril. 1995;63:887–93.
Article
CAS
PubMed
Google Scholar
Jouannet P, Wang C, Eustache F, Kold-Jensen T, Auger J. Semen quality and male reproductive health: the controversy about human sperm concentration decline. Apmis. 2001;109:333–44.
Article
CAS
PubMed
Google Scholar
Swan SH, Elkin EP, Fenster L. Have sperm densities declined? A reanalysis of global trend data. Environ Health Perspect. 1997;105:1228–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swan SH, Elkin EP, Fenster L. The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. Environ Health Perspect. 2000;108:961–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
te Velde ER, Bonde JP. Misconceptions about falling sperm counts and fertility in Europe. Asian J Androl. 2013;15:195–8.
Article
Google Scholar
Itoh N, Kayama F, Tatsuki J, Tsukamoto T. Have sperm counts deteriorated over the past 20 years in healthy, young Japanese men? Results from the Sapporo area. J Androl. 2001;22:40–4.
CAS
PubMed
Google Scholar
Costello MF, Sjoblom P, Haddad Y, Steigrad SJ, Bosch EG. No decline in semen quality among potential sperm donors in Sydney, Australia, between 1983 and 2001. J Assist Reprod Genet. 2002;19:284–90.
Article
PubMed
PubMed Central
Google Scholar
Sengupta P, Dutta S, Krajewska-Kulak E. The disappearing sperms: analysis of reports published between 1980 and 2015. Am J Mens Health. 2017;11:1279–304.
Article
PubMed
Google Scholar
Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;23:1–14.
Article
Google Scholar
Hess RA, de Franca LR. Spermatogenesis and Cycle of the Seminiferous Epithelium. Adv Exp Med Biol. 2009;636:1–15.
Nishimura H, L’Hernault SW. Spermatogenesis. Curr Biol. 2017;27:R988–94.
Article
CAS
PubMed
Google Scholar
Ehmcke J, Schlatt S, Ehmcke J, Schlatt S. A revised model for spermatogonial expansion in man: lessons from non-human primates. Reproduction. 2006;132:673–80.
Article
CAS
PubMed
Google Scholar
Tarulli GA, Stanton PG, Meachem SJ. Is the Adult Sertoli Cell Terminally Differentiated? Biol Reprod. 2012;87:13.
Article
PubMed
CAS
Google Scholar
O’Shaughnessy PJ, Baker PJ, Monteiro A, Cassie S, Bhattacharya S, Fowler PA. Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J Clin Endocrinol Metab. 2007;92:4792–801.
Article
PubMed
CAS
Google Scholar
Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125:769–84.
Article
CAS
PubMed
Google Scholar
World Health Organization. Laboratory Manual for the Examination and Processing of Human Semen. 2010.
Google Scholar
World Health Organization. Who laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Int J Androl. 1999;10(3):149.
MacLeod J, Gold RZ. The male Factor in fertility and Infertility: III. An analysis of motile activity in the spermatozoa of 1000 fertile men and 1000 men in infertile marriage. Fertil Steril. 1951;2:187–204.
Article
CAS
PubMed
Google Scholar
MacLeod J. Semen quality in one thousand men of known fertility and in eight hundred cases of infertile marriage. Fertil Steril. 1951;2:115–39.
Article
CAS
PubMed
Google Scholar
Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345:1388–93.
Article
CAS
PubMed
Google Scholar
Slama R, Eustache F, Ducot B, Jensen TK, Jørgensen N, Horte A, et al. Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities. Hum Reprod. 2002;17:503–15.
Article
CAS
PubMed
Google Scholar
Bonde JPE, Ernst E, Jensen TK, Hjollund NHI, Kolstad H, Scheike T, et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet. 1998;352:1172–7.
Article
CAS
PubMed
Google Scholar
Menkveld R, Wong WY, Lombard CJ, Wetzels AMM, Thomas CMG, Merkus HMWM, et al. Semen parameters, including WHO and strict criteria morphology, in a fertile and subfertile population: an effort towards standardization of in-vivo thresholds. Hum Reprod. 2001;16:1165–71.
Article
CAS
PubMed
Google Scholar
Buck Louis GM, Sundaram R, Schisterman EF, Sweeney A, Lynch CD, Kim S, et al. Semen quality and time to pregnancy: the longitudinal investigation of fertility and the environment study. Fertil Steril. 2014;101(2):453–62.
Article
PubMed
Google Scholar
Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22:1506–12.
Article
PubMed
Google Scholar
Jensen TK, Jacobsen R, Christensen K, Nielsen NC, Bostofte E. Good semen quality and life expectancy: a cohort study of 43,277 men. Am J Epidemiol. 2009;170:559–65.
Article
PubMed
Google Scholar
Eisenberg ML, Li S, Behr B, Cullen MR, Galusha D, Lamb DJ, et al. Semen quality, infertility and mortality in the USA. Hum Reprod. 2014;29:1567–74.
Article
PubMed
PubMed Central
Google Scholar
Eisenberg ML, Li S, Cullen MR, Baker LC. Increased risk of incident chronic medical conditions in infertile men: analysis of United States claims data. Fertil Steril. 2016;105:629–36.
Article
PubMed
Google Scholar
Latif T, Jensen TK, Mehlsen J, Holmboe SA, Brinth L, Pors K, et al. Semen quality as a predictor of subsequent morbidity: a Danish cohort study of 4,712 men with long-term follow-up. Am J Epidemiol. 2017;186:910–7.
Article
PubMed
Google Scholar
Andersson AM, Jørgensen N, Frydelund-Larsen L, Rajpert-De Meyts E, Skakkebæk NE. Impaired Leydig cell function in infertile men: a study of 357 idiopathic infertile men and 318 proven fertile controls. J Clin Endocrinol Metab. 2004;89:3161–7.
Article
CAS
PubMed
Google Scholar
Skakkebæk NE, Rajpert-De Meyts E, Main KMM, Skakkebaek NE, Rajpert-De Meyts E, Main KMM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.
Article
PubMed
Google Scholar
Juul A, Almstrup K, Andersson AM, Jensen TK, Jørgensen N, Main KM, et al. Possible fetal determinants of male infertility. Nat Rev Endocrinol. 2014;10:553–62.
Article
CAS
PubMed
Google Scholar
Wohlfahrt-Veje C, Main KM, Skakkebæk NE. Testicular dysgenesis syndrome: Foetal origin of adult reproductive problems. Clin Endocrinol. 2009;71:459–65.
Article
Google Scholar
Perheentupa A, Sadov S, Rönkä R, Virtanen HE, Rodprasert W, Vierula M, et al. Semen quality improves marginally during young adulthood: a longitudinal follow-up study. Hum Reprod. 2016;31:502–10.
Article
PubMed
PubMed Central
Google Scholar
Virtanen HE, Jørgensen N, Toppari J. Semen quality in the 21st century. Nat Rev Urol. 2017;14:120–30.
Article
PubMed
Google Scholar
Jorgensen N. East-west gradient in semen quality in the Nordic-Baltic area: a study of men from the general population in Denmark, Norway, Estonia and Finland. Hum Reprod. 2002;17:2199–208.
Article
PubMed
Google Scholar
Paasch U, Salzbrunn A, Glander HJ, Plambeck K, Salzbrunn H, Grunewald S, et al. Semen quality in sub-fertile range for a significant proportion of young men from the general German population: a co-ordinated, controlled study of 791 men from Hamburg and Leipzig. Int J Androl. 2008;31:93–102.
Article
PubMed
Google Scholar
Iwamoto T, Nozawa S, Mieno MN, Yamakawa K, Baba K, Yoshiike M, et al. Semen quality of 1559 young men from four cities in Japan: a cross-sectional population-based study. BMJ Open. 2013;3:e002222.
Article
PubMed
PubMed Central
Google Scholar
Fernandez MF, Duran I, Olea N, Avivar C, Vierula M, Toppari J, et al. Semen quality and reproductive hormone levels in men from southern Spain. Int J Androl. 2012;35:1–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Priskorn L, Nordkap L, Bang AK, Krause M, Holmboe SA, Egeberg Palme DL, et al. Average sperm count remains unchanged despite reduction in maternal smoking: results from a large cross-sectional study with annual investigations over 21 years. Hum Reprod. 2018;33:1–11.
Rahban R, Priskorn L, Senn A, Stettler E, Galli F, Vargas J, et al. Semen quality of young men in Switzerland: a nationwide cross-sectional population-based study. Andrology. 2019;7(6):818–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Znaor A, Lortet-Tieulent J, Jemal A, Bray F. International variations and trends in testicular Cancer incidence and mortality. Eur Urol. 2014;65:1095–106.
Article
PubMed
Google Scholar
Richthoff J. Higher sperm counts in southern Sweden compared with Denmark. Hum Reprod. 2002;17:2468–73.
Article
CAS
PubMed
Google Scholar
Punab M, Zilaitiene B, Jørgensen N, Horte A, Matulevicius V, Peetsalu A, et al. Regional differences in semen qualities in the Baltic region. Int J Androl. 2002;25(4):243–52.
Article
PubMed
Google Scholar
Andersen AG, Jensen TK, Carlsen E, Jørgensen N, Andersson AM, Krarup T, et al. High frequency of sub-optimal semen quality in an unselected population of young men. Hum Reprod. 2000;15:366–72.
Article
CAS
PubMed
Google Scholar
Tsarev I, Gagonin V, Giwercman A, Erenpreiss J. Sperm concentration in Latvian military conscripts as compared with other countries in the Nordic-Baltic area. Int J Androl. 2005;28:208–14.
Article
PubMed
Google Scholar
Jørgensen N, Asklund C, Carlsen E, Skakkebæk NE, Von Eyben FE, Jégou B, et al. Coordinated European investigations of semen quality: results from studies of Scandinavian young men is a matter of concern. Int J Androl. 2006;29:54–61.
Article
PubMed
Google Scholar
Axelsson J, Rylander L, Rignell-Hydbom A, Giwercman A. No secular trend over the last decade in sperm counts among Swedish men from the general population. Hum Reprod. 2011;26:1012–6.
Article
CAS
PubMed
Google Scholar
Halling J, Petersen MSP, Jørgensen N, Jensen TK, Grandjean P, Weihe P. Semen quality and reproductive hormones in Faroese men: A cross-sectional population-based study of 481 men. BMJ Open. 2013;3:e001946.
Article
PubMed
PubMed Central
Google Scholar
Mendiola J, Jørgensen N, Andersson AM, Stahlhut RW, Liu F, Swan SH. Reproductive parameters in young men living in Rochester, New York. Fertil Steril. 2014;101:1064–71.
Article
PubMed
Google Scholar
Hart RJ, Doherty DA, McLachlan RI, Walls ML, Keelan JA, Dickinson JE, et al. Testicular function in a birth cohort of young men. Hum Reprod. 2015;30:dev244.
Article
Google Scholar
Jørgensen N, Joensen UN, Jensen TK, Jensen MB, Almstrup K, Olesen IA, et al. Human semen quality in the new millennium: a prospective cross-sectional population-based study of 4867 men. BMJ Open. 2012;2:e000990.
Article
PubMed
PubMed Central
Google Scholar
Rodprasert W, Virtanen HE, Sadov S, Perheentupa A, Skakkebæk NE, Jørgensen N, et al. An update on semen quality among young Finnish men and comparison with Danish data. Andrology. 2018;7:15–23.
Article
PubMed
PubMed Central
Google Scholar
Erenpreiss J, Punab M, Zilaitiene B, Hlevicka S, Zayakin P, Matulevicius V, et al. Semen quality of young men from the general population in Baltic countries. Hum Reprod. 2017;32:1334–40.
Article
CAS
PubMed
Google Scholar
WHO. Tobacco. 2019 [cited 2019 Oct 21]. Available from: https://www.who.int/news-room/fact-sheets/detail/tobacco.
Google Scholar
Jensen MS, Mabeck LM, Toft G, Thulstrup AM, Bonde JP. Lower sperm counts following prenatal tobacco exposure. Hum Reprod. 2005;20:2559–66.
Article
CAS
PubMed
Google Scholar
Li Y, Lin H, Li Y, Cao J. Association between socio-psycho-behavioral factors and male semen quality: systematic review and meta-analyses. Fertil Steril. 2011;95:116–23.
Article
PubMed
Google Scholar
Vine MF, Margolin BH, Morrison HI, Hulka BS. Cigarette smoking and sperm density: a meta-analysis. Fertil Steril. 1994;61:35–43.
Article
CAS
PubMed
Google Scholar
Sharma R, Harlev A, Agarwal A, Esteves SC. Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization Laboratory methods for the examination of human semen. Eur Urol. 2016;70:635–45.
Article
PubMed
Google Scholar
Robbins WA, Elashoff DA, Xun L, Jia J, Li N, Wu G, et al. Effect of lifestyle exposures on sperm aneuploidy. Cytogenet Genome Res. 2005;111:371–7.
Article
CAS
PubMed
Google Scholar
Taha EA, Ez-Aldin AM, Sayed SK, Ghandour NM, Mostafa T. Effect of smoking on sperm vitality, DNA integrity, seminal oxidative stress, Zinc in Fertile Men. Urology. 2012;80:822–5.
Article
PubMed
Google Scholar
Storgaard L, Bonde JP, Ernst E, Spanô M, Andersen CY, Frydenberg M, et al. Does smoking during pregnancy affect sons’ sperm counts? Epidemiology. 2003;14:278–86.
PubMed
Google Scholar
Ramlau-Hansen CH, Thulstrup AM, Aggerholm AS, Jensen MS, Toft G, Bonde JP. Is smoking a risk factor for decreased semen quality? A cross-sectional analysis. Hum Reprod. 2007;22:188–96.
Article
CAS
PubMed
Google Scholar
Ramlau-Hansen TAM, Storgaard L, Toft G, Olsen J, Bonde JP. Is prenatal exposure to tobacco smoking a cause of poor semen quality? A follow-up study. Am J Epidemiol. 2007;165:1372–9.
Article
PubMed
Google Scholar
Ravnborg TL, Jensen TK, Andersson A-M, Toppari J, Skakkebaek NE, Jorgensen N. Prenatal and adult exposures to smoking are associated with adverse effects on reproductive hormones, semen quality, final height and body mass index. Hum Reprod. 2011;26:1000–11.
Article
CAS
PubMed
Google Scholar
Håkonsen L, Ernst A, Ramlau-Hansen C. Maternal cigarette smoking during pregnancy and reproductive health in children: a review of epidemiological studies. Asian J Androl. 2014;16:39.
Article
PubMed
CAS
Google Scholar
Jensen TK, Jørgensen N, Punab M, Haugen TB, Suominen J, Zilaitiene B, et al. Association of in Utero Exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European countries. Am J Epidemiol. 2004;159:49–58.
Article
PubMed
Google Scholar
Garlantézec R, Multigner L, Oliva A. Maternal smoking during pregnancy, semen characteristics and reproductive hormone levels in men consulting for couple infertility. Andrologia. 2019;51(10):2–5.
Axelsson J, Rylander L, Rignell-Hydbom A, Silfver KÅ, Stenqvist A, Giwercman A. The Impact of Paternal and Maternal Smoking on Semen Quality of Adolescent Men. PLoS One. 2013;8:e66766 Schlatt S, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Virtanen HE, Sadov S, Toppari J. Prenatal exposure to smoking and male reproductive health. Curr Opin Endocrinol Diabetes Obes. 2012;19:228–32.
Article
PubMed
Google Scholar
Coutts SM, Fulton N, Anderson RA. Environmental toxicant-induced germ cell apoptosis in the human fetal testis. Hum Reprod. 2007;22:2912–8.
Article
CAS
PubMed
Google Scholar
WHO. Alcohol. 2018 [cited 2019 Oct 22]. Available from: https://www.who.int/news-room/fact-sheets/detail/alcohol.
Google Scholar
Jensen TK, Gottschau M, Madsen JOB, Andersson A-M, Lassen TH, Skakkebaek NE, et al. Habitual alcohol consumption associated with reduced semen quality and changes in reproductive hormones; a cross-sectional study among 1221 young Danish men. BMJ Open. 2014;4:e005462.
Article
PubMed
PubMed Central
Google Scholar
Marinelli D, Gaspari L, Pedotti P, Taioli E. Mini-review of studies on the effect of smoking and drinking habits on semen parameters. Int J Hyg Environ Health. 2004;207:185–92.
Article
PubMed
Google Scholar
Jensen TK, Swan S, Jørgensen N, Toppari J, Redmon B, Punab M, et al. Alcohol and male reproductive health: a cross-sectional study of 8344 healthy men from Europe and the USA. Hum Reprod. Narnia. 2014;29:1801–9.
Article
CAS
Google Scholar
Ricci E, Al Beitawi S, Cipriani S, Candiani M, Chiaffarino F, Viganò P, et al. Semen quality and alcohol intake: a systematic review and meta-analysis. Reprod Biomed Online. 2017;34:38–47.
Article
CAS
PubMed
Google Scholar
Ricci E, Noli S, Ferrari S, La Vecchia I, Cipriani S, De Cosmi V, et al. Alcohol intake and semen variables: cross-sectional analysis of a prospective cohort study of men referring to an Italian Fertility Clinic. Andrology. 2018;6:690–6.
Article
CAS
PubMed
Google Scholar
Pajarinen JT, Karhunen PJ. Spermatogenic arrest and “Sertoli cell-only” syndrome- common alcohol-induced disorders of the human testis. Int J Androl. 1994;299:292–9.
Article
Google Scholar
Pajarinen J, Karhunen PJ, Savolainen V, Lalu K, Penttila A, Laippala P. Moderate Alcohol Consumption and Disorders of Human Spermatogenesis. Alcohol Clin Exp Res. 1996;20:332–7.
Article
CAS
PubMed
Google Scholar
Vicari E, Arancio A, Giuffrida V, D’Agata R, Calogero AE. A case of reversible azoospermia following withdrawal from alcohol consumption. J Endocrinol Invest. 2002;25:473–6.
Article
CAS
PubMed
Google Scholar
Sermondade N, Elloumi H, Berthaut I, Mathieu E, Delarouzière V, Ravel C, et al. Progressive alcohol-induced sperm alterations leading to spermatogenic arrest, which was reversed after alcohol withdrawal. Reprod Biomed Online. 2010;20:324–7.
Article
PubMed
Google Scholar
Duca Y, Aversa A, Condorelli RA, Calogero AE, La Vignera S. Substance Abuse and Male Hypogonadism. J Clin Med. 2019;8:732.
Article
CAS
PubMed Central
Google Scholar
Muthusami KR, Chinnaswamy P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil Steril. 2005;84:919–24.
Article
CAS
PubMed
Google Scholar
Ramlau-Hansen CH, Toft G, Jensen MS, Strandberg-Larsen K, Hansen ML, Olsen J. Maternal alcohol consumption during pregnancy and semen quality in the male offspring: two decades of follow-up. Hum Reprod. 2010;25:2340–5.
Article
CAS
PubMed
Google Scholar
Nordkap L, Jensen TK, Hansen ÅM, Lassen TH, Bang AK, Joensen UN, et al. Psychological stress and testicular function: A cross-sectional study of 1,215 Danish men. Fertil Steril. 2016;105:174–187.e2.
Article
PubMed
Google Scholar
Janevic T, Kahn LG, Landsbergis P, Cirillo PM, Cohn BA, Liu X, et al. Effects of work and life stress on semen quality. 2014;.
Book
Google Scholar
Barrett ES, Swan SH. Stress and androgen activity during fetal development. Endocrinology. 2015;156:3435–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dean A, Sharpe RM. Anogenital distance or digit length ratio as measures of fetal androgen exposure: Relationship to male reproductive development and its disorders. J Clin Endocrinol Metab. 2013;98:2230–8.
Article
CAS
PubMed
Google Scholar
Gerardin DCC, Pereira OCM, Kempinas WG, Florio JC, Moreira EG, Bernardi MM. Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiol Behav. 2005;84:97–104.
Article
CAS
PubMed
Google Scholar
Plana-Ripoll O, Li J, Kesmodel US, Parner E, Olsen J, Basso O. Reproductive function in the sons of women who experienced stress due to bereavement before and during pregnancy: a nationwide population-based cohort study. Fertil Steril. 2017;107:189–197.e8.
Article
PubMed
Google Scholar
Bräuner EV, Hansen ÅM, Doherty DA, Dickinson JE, Handelsman DJ, Hickey M, et al. The association between in-utero exposure to stressful life events during pregnancy and male reproductive function in a cohort of 20-year-old offspring: the Raine study. Hum Reprod. Narnia. 2019;34:1345–55.
Google Scholar
Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays. 2014;36:359–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89:124–8.
Article
PubMed
Google Scholar
Desai N, Sharma R, Makker K, Sabanegh E, Agarwal A. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril. 2009;92:1626–31.
Article
PubMed
Google Scholar
Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92:1318–25.
Article
CAS
PubMed
Google Scholar
Zalata A, El-Samanoudy AZ, Shaalan D, El-Baiomy Y, Mostafa T. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm. Int J Fertil Steril. 2015;9:129–36.
CAS
PubMed
PubMed Central
Google Scholar
Gorpinchenko I, Nikitin O, Banyra O, Shulyak A. The influence of direct mobile phone radiation on sperm quality. Cent Eur J Urol. 2014;67:65–71.
Google Scholar
Erogul O, Oztas E, Yildirim I, Kir T, Aydur E, Komesli G, et al. Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study. Arch Med Res. 2006;37:840–3.
Article
PubMed
Google Scholar
Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: a systematic review and meta-analysis. Environ Int. 2014;70:106–12.
Article
PubMed
Google Scholar
Avendaño C, Mata A, Sanchez Sarmiento CA, Doncel GF. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil Steril. 2012;97:39–45.e2.
Article
PubMed
Google Scholar
Kesari KK, Agarwal A, Henkel R. Radiations and male fertility. Reprod Biol Endocrinol. 2018;16:118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim Y-W, Kim H-S, Lee J-S, Kim Y-J, Lee S-K, Seo J-N, et al. Effects of 60 Hz 14 μT magnetic field on the apoptosis of testicular germ cell in mice. Bioelectromagnetics. 2009;30:66–72.
Article
PubMed
Google Scholar
Al-Akhras MA, Elbetieha A, Hasan MK, Al-Omari I, Darmani H, Albiss B. Effects of extremely low frequency magnetic field on fertility of adult male and female rats. Bioelectromagnetics. 2001;22:340–4.
Article
CAS
PubMed
Google Scholar
Lee JS, Ahn SS, Jung KC, Kim Y-W, Lee SK. Effects of 60 Hz electromagnetic field exposure on testicular germ cell apoptosis in mice. Asian J Androl. 2004;6:29–34.
PubMed
Google Scholar
Baste V, Oftedal G, Møllerløkken OJ, Hansson Mild K, Moen BE. Prospective study of pregnancy outcomes after parental cell phone exposure: the Norwegian mother and child cohort study. Epidemiology. 2015;26:613–21.
Article
PubMed
Google Scholar
Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30:293–342.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergman Å, Heindel J, Jobling S, Kidd K, Zoeller RT. State-of-the-science of endocrine disrupting chemicals. Toxicol Lett. 2012;211:1-22.
Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect. 1996;104(Suppl 4):741–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amaral Mendes JJ. The endocrine disrupters: a major medical challenge. Food Chem Toxicol. 2002;40:781–8.
Article
CAS
PubMed
Google Scholar
Marques-Pinto A, Carvalho D. Human infertility: are endocrine disruptors to blame? Endocr Connect. 2013;2:R15–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olea N, Fernandez MF. Chemicals in the environment and human male fertility. Occup Environ Med. 2007;64:430–1.
Article
PubMed
PubMed Central
Google Scholar
Safe S. Endocrine disruptors and human health: is there a problem. Toxicology. 2004;205:3–10.
Article
CAS
PubMed
Google Scholar
Giwercman A, Rylander L, Lundberg GY. Influence of endocrine disruptors on human male fertility. Reprod BioMed Online. 2007;15:633–42.
Article
CAS
PubMed
Google Scholar
Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101:378–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vested A, Giwercman A, Bonde J, Toft G. Persistent organic pollutants and male reproductive health. Asian J Androl. 2014;16:71.
Article
PubMed
CAS
Google Scholar
Sharpe RM, Franks S. Environment, lifestyle and infertility - An inter-generational issue. Nat Med Biol. 2002;8:S33–40.
Sharpe RM. The ‘oestrogen hypothesis’- where do we stand now? Int J Androl. 2003;26:2–15.
Article
CAS
PubMed
Google Scholar
Mocarelli P, Gerthoux PM, Patterson DG, Milani S, Limonta G, Bertona M, et al. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect. 2008;116:70–7.
Article
CAS
PubMed
Google Scholar
Mocarelli P, Gerthoux PM, Needham LL, Patterson DG, Limonta G, Falbo R, et al. Perinatal exposure to low doses of dioxin can permanently impair human semen quality. Environ Health Perspect. 2011;119:713–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo YL, Hsu P-C, Hsu C-C, Lambert GH. Semen quality after prenatal exposure to polychlorinated biphenyls and dibenzofurans. Lancet. 2000;356:1240–1.
Article
CAS
PubMed
Google Scholar
Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Støvring H, Kristensen SL, et al. In utero exposure to persistent organochlorine pollutants and reproductive health in the human male. Reproduction. 2014;148:635–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen SL, Halldorsson TI, et al. Associations of in Utero exposure to Perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environ Health Perspect. 2013;121:453–8.
Article
PubMed
PubMed Central
Google Scholar
Hart RJ, Doherty DA, Keelan JA, Minaee NS, Thorstensen EB, Dickinson JE, et al. The impact of antenatal Bisphenol a exposure on male reproductive function at 20–22 years of age. Reprod Biomed Online. 2018;36:340–7.
Article
CAS
PubMed
Google Scholar
Axelsson J, Rylander L, Rignell-Hydbom A, Lindh CH, Jönsson BAG, Giwercman A. Prenatal phthalate exposure and reproductive function in young men. Environ Res. 2015;138:264–70.
Article
CAS
PubMed
Google Scholar
Virtanen HE, Adamsson A. Cryptorchidism and endocrine disrupting chemicals. Mol Cell Endocrinol. 2012;355:208–20.
Article
CAS
PubMed
Google Scholar
Mendiola J, Stahlhut RW, Jørgensen N, Liu F, Swan SH. Shorter anogenital distance predicts poorer semen quality in young men in Rochester, New York. Environ Health Perspect. 2011;119:958–63.
Article
PubMed
PubMed Central
Google Scholar
Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update. 2016;23:104–25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rodprasert W, Main KM, Toppari J, Virtanen HE. Associations between male reproductive health and exposure to endocrine-disrupting chemicals. Curr Opin Endocr Metab Res. 2019;7:49–61.
Article
Google Scholar
World Health Organization. International Programme on Chemical Safety. Global assessment on the state of the science of endocrine disruptors; 2002. https://apps.who.int/iris/handle/10665/67357.
Mínguez-Alarcón L, Hauser R, Gaskins AJ. Effects of bisphenol a on male and couple reproductive health: a review. Fertil Steril. 2016;106:864–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adoamnei E, Mendiola J, Vela-Soria F, Fernández MF, Olea N, Jørgensen N, et al. Urinary bisphenol a concentrations are associated with reproductive parameters in young men. Environ Res. 2018;161:122–8.
Article
CAS
PubMed
Google Scholar
Hu W, Dong T, Wang L, Guan Q, Song L, Chen D, et al. Obesity aggravates toxic effect of BPA on spermatogenesis. Environ Int. 2017;105:56–65.
Article
CAS
PubMed
Google Scholar
Mínguez-Alarcón L, Sergeyev O, Burns JS, Williams PL, Lee MM, Korrick SA, et al. A longitudinal study of Peripubertal serum Organochlorine concentrations and semen parameters in young men: the Russian Children’s study. Environ Health Perspect. 2017;125:460–6.
Article
PubMed
Google Scholar
Hsu P-C, Li M-C, Lee Y-C, Kuo P-L, Guo YL. Polychlorinated biphenyls and dibenzofurans increased abnormal sperm morphology without alterations in aneuploidy: the Yucheng study. Chemosphere. 2016;165:294–7.
Article
CAS
PubMed
Google Scholar
Chang W-H, Wu M-H, Pan H-A, Guo P-L, Lee C-C. Semen quality and insulin-like factor 3: associations with urinary and seminal levels of phthalate metabolites in adult males. Chemosphere. 2017;173:594–602.
Article
CAS
PubMed
Google Scholar
Smarr MM, Kannan K, Sun L, Honda M, Wang W, Karthikraj R, et al. Preconception seminal plasma concentrations of endocrine disrupting chemicals in relation to semen quality parameters among male partners planning for pregnancy. Environ Res. 2018;167:78–86.
Article
CAS
PubMed
Google Scholar
Albert O, Huang JY, Aleksa K, Hales BF, Goodyer CG, Robaire B, et al. Exposure to polybrominated diphenyl ethers and phthalates in healthy men living in the greater Montreal area: a study of hormonal balance and semen quality. Environ Int. 2018;116:165–75.
Article
CAS
PubMed
Google Scholar
Petersen M, Halling J, Jørgensen N, Nielsen F, Grandjean P, Jensen T, et al. Reproductive function in a population of young Faroese men with elevated exposure to polychlorinated biphenyls (PCBs) and Perfluorinated alkylate substances (PFAS). Int J Environ Res Public Health. 2018;15:1880.
Article
PubMed Central
CAS
Google Scholar
Song X, Tang S, Zhu H, Chen Z, Zang Z, Zhang Y, et al. Biomonitoring PFAAs in blood and semen samples: investigation of a potential link between PFAAs exposure and semen mobility in China. Environ Int. 2018;113:50–4.
Article
CAS
PubMed
Google Scholar
Toft G, Lenters V, Vermeulen R, Heederik D, Thomsen C, Becher G, et al. Exposure to polybrominated diphenyl ethers and male reproductive function in Greenland, Poland and Ukraine. Reprod Toxicol. 2014;43:1–7.
Article
CAS
PubMed
Google Scholar
Abdelouahab N, AinMelk Y, Takser L. Polybrominated diphenyl ethers and sperm quality. Reprod Toxicol. 2011;31:546–50.
Article
CAS
PubMed
Google Scholar
Aitken RJ. Not every sperm is sacred; a perspective on male infertility. Mol Hum Reprod. 2018;24:287–98.
CAS
PubMed
Google Scholar
Kilcoyne KR, Mitchell RT. Effect of environmental and pharmaceutical exposures on fetal testis development and function: a systematic review of human experimental data. Hum Reprod Update. 2019;25:397–421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15:369–84.
Article
CAS
PubMed
Google Scholar