Fathalla MF. The contraceptive technology revolution. In: Raff WK, Fathalla MF, Saad E, editors. New pharmacological approaches to reproductive health and healthy aging. Berlin: Ernst Schering Research Foundation Workshop Supplement 8. Springer-Verlag; 2001. p. 69–81.
Chapter
Google Scholar
Stock G, Habenicht UA. Collaboration between industry and academia-prospects for male fertility control. Int J Gynecol Obstet. 1999;67:85–92.
Article
Google Scholar
Page ST, Amory JK, Bremner WJ. Advances in male contraception. Endocr Rev. 2008;29(4):465–93.
Article
CAS
PubMed Central
PubMed
Google Scholar
Robaire B, Hinton BT. The epididymis: from molecules to clinical practice. New York: Kluwer Academic/Plenum Publishers; 2002. p. 575.
Book
Google Scholar
Cummins JM, Orgebin-Crist MC. Investigations into the fertility of epididymal spermatozoa. Biol Reprod. 1971;5(1):13–9.
Article
CAS
PubMed
Google Scholar
Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15(2):213–27.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sullivan R, Frenette G, Girouard J. Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl. 2007;9(4):483–91.
Article
CAS
PubMed
Google Scholar
Visconti PE, Krapf D, de la Vega-Beltrán JL, Acevedo JJ, Sarszon A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl. 2011;13(3):395–405.
Article
CAS
PubMed Central
PubMed
Google Scholar
Saez F, Ouvrier A, Drevet JR. Epididymis cholesterol homeostasis and sperm fertilizing ability. Asian J Androl. 2011;13(1):11–7.
Article
CAS
PubMed
Google Scholar
Noblanc A, Kocer A, Chabory E, Vernet P, Saez F, Cadet R, et al. Glutathione peroxidases (GPx) at work on epididymal spermatozoa: an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability. J Androl. 2011;32(6):641–50.
Article
CAS
PubMed
Google Scholar
Reyes A, Chavarría ME. Interference with epididymal physiology as possible site of male contraception. Arch Androl. 1981;7(2):159–68.
Article
CAS
PubMed
Google Scholar
Comhaire FH. Male contraception: hormonal, mechanical and other. Hum Reprod. 1994;9(4):586–90.
Article
CAS
PubMed
Google Scholar
Cooper TG, Yeung CH. Approaches to post-testicular contraception. Asian J Androl. 1999;1(1–2):29–36.
CAS
PubMed
Google Scholar
Cooper TG, Yeung CH. Recent biochemical approaches to post-meiotic testicular, epididymal contraception. Hum Reprod Update. 1999;5:141–52.
Article
CAS
PubMed
Google Scholar
Wang C, Swerdloff RS. Male contraception. Best Pract Res Clin Obstet Gynaecol. 2002;16(2):193–203.
Article
CAS
PubMed
Google Scholar
Cooper TG. The epididymis as a target for male contraception. In: Robaire B, Hinton BT, editors. The epididymis: from molecules to clinical practice. New York: Kluwer Academic/Plenum Publishers; 2002. p. 483–502.
Chapter
Google Scholar
Khole V. Epididymis as a target for contraception. Indian J Exp Biol. 2003;41(7):764–72.
PubMed
Google Scholar
Sipilä P, Jalkanen J, Huhtaniemi IT, Poutanen M. Novel epididymal proteins as targets for the development of post-testicular male contraception. Reproduction. 2009;137(3):379–89.
Article
CAS
PubMed
Google Scholar
Jervis KM, Robaire B. Dynamic changes in gene expression along the rat epididymis. Biol Reprod. 2001;65:696–703.
Article
CAS
PubMed
Google Scholar
Penttinen J, Pujianto DA, Sipila P, Huhtaniemi I, Poutanen M. Discovery in silico and characterization in vitro of novel genes exclusively expressed in the mouse epididymis. Mol Endocrinol. 2003;17:2138–51.
Article
CAS
PubMed
Google Scholar
Hsia N, Cornwall GA. DNA microarray analysis of region-specific gene expression in the mouse epididymis. Biol Reprod. 2004;70(2):448–57.
Article
CAS
PubMed
Google Scholar
Johnston DS, Jelinsky SA, Bang HJ, DiCandeloro P, Wilson E, Kopf GS, et al. The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biol Reprod. 2005;73:404–13.
Article
CAS
PubMed
Google Scholar
Dacheux JL, Belghazi M, Lanson Y, Dacheux F. Human epididymal secretome and proteome. Mol Cell Endocrinol. 2006;250:36–42.
Article
CAS
PubMed
Google Scholar
Oh J, Lee J, Woo JM, Choi E, Park I, Han C, et al. Systematic identification and integrative analysis of novel genes expressed specifically or predominantly in mouse epididymis. BMC Genomics. 2006;7:314.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yuan H, Liu A, Zhang L, Zhou H, Wang Y, Zhang H, et al. Proteomic profiling of regionalized proteins in rat epididymis indicates consistency between specialized distribution and protein functions. J Proteome Res. 2006;5:299–307.
Article
CAS
PubMed
Google Scholar
Zhang JS, Liu Q, Li YM, Hall SH, French FS, Zhang YL. Genome-wide profiling of segmental-regulated transcriptomes in human epididymis using oligo microarray. Mol Cell Endocrinol. 2006;250:169–77.
Article
CAS
PubMed
Google Scholar
Sipilä P, Pujianto DA, Shariatmadari R, Nikkiiä J, Lehtoranta M, Huhtaniemi I, et al. Differential endocrine regulation of genes enriched in initial segment and distal caput of the mouse epididymis as revealed by genome-wide expression profiling. Biol Reprod. 2006;75:240–51.
Article
CAS
PubMed
Google Scholar
Jelinsky SA, Turner TT, Bang HJ, Finger JN, Solarz MK, Wilson E, et al. The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biol Reprod. 2007;76:561–70.
Article
CAS
PubMed
Google Scholar
Thimon V, Koukoui O, Calvo E, Sullivan R. Region-specific gene expression profiling along the human epididymis. Mol Hum Reprod. 2007;13:691–704.
Article
CAS
PubMed
Google Scholar
Li JY, Wang HY, Liu J, Liu Q, Zhang JS, Wan FC, et al. Transcriptome analysis of a cDNA library from adult human epididymis. DNA Res. 2008;15:115–22.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li J, Liu F, Liu X, Liu J, Zhu P, Wan F, et al. Mapping of the human testicular proteome and its relationship with that of the epididymis and spermatozoa. Mol Cell Proteomics. 2011. https://doi.org/10.1074/mcp.M110.004630.
Article
CAS
Google Scholar
Kopf GS. Approaches to the identification of new nonhormonal targets for male contraception. Contraception. 2008;78:S18–22.
Article
CAS
PubMed
Google Scholar
Chen CY, Mruk DD. The blood-testis barrier and its implication for male contraception. Pharmacol Rev. 2012;64:16–64.
Article
Google Scholar
Mital P, Hinton BT, Dufour JM. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol Reprod. 2011;84(5):851–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang XG, Xu Y, Qian SZ. Injection of copper powder into epididymides via vas deferens on male fertility. Adv Contracept Deliv Syst. 1987;3(2–3):167–71.
CAS
PubMed
Google Scholar
Skandhan KP. Copper: a possible male contraceptive. Adv Contracept Deliv Syst. 1988;4(1):37–40.
CAS
PubMed
Google Scholar
Fahim MS, Wang M, Sutcu MF, Fahim Z, Youngquist RS. Sterilization of dogs with intra-epididymal injection of zinc arginine. Contraception. 1993;47(1):107–22.
Article
CAS
PubMed
Google Scholar
Yeung CH, Cooper TG. Study of the role of epididymal alpha-glucosidase in the fertility of male rats by the administration of the enzyme inhibitor castanospermine. J Reprod Fertil. 1994;102(2):401–10.
Article
CAS
PubMed
Google Scholar
Hamil KG, Sivashanmugan P, Richardson RT, Grossman G, Ruben SM, Mohler JL, et al. HE2b and HE2g, new members of an epididymis-specific family of androgen-regulated proteins in human. Endocrinol. 2000;141:1245–53.
Article
CAS
Google Scholar
Richardson RT, Sivashanmugan P, Hall SH, Hamil KG, Moore PA, Ruben SM, et al. Cloning and sequencing of human Eppin: a novel family of protease inhibitors expressed in the epididymis and testis. Gene. 2001;270:93–102.
Article
CAS
PubMed
Google Scholar
Ding X, Zhang J, Fei J, Bian Z, Li Y, Xia Y, et al. Variants of the EPPIN gene affect the risk of idiopathic male infertility in the Han-Chinese population. Hum Reprod. 2010;25:1657–65.
Article
CAS
PubMed
Google Scholar
Denolet E, De Gendt K, Allemeersch J, Engelen K, Marcahl K, Van Hummelen P, et al. The effect of a Sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol Endocrinol. 2006;20:321–34.
Article
CAS
PubMed
Google Scholar
Schauwaers K, De Gendt K, Saunders PT, Atanassova N, Haelens A, Callewaert L, et al. Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model. Proc Natl Acad Sci U S A. 2007;104:4961–6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Willems A, De Gendt K, Allemeersch J, Smith LB, Welsh M, Swinnen JV, et al. Early effects of Sertoli cell-selective androgen receptor ablation on testicular gene expression. Int J Androl. 2009;38:507–17.
Article
CAS
Google Scholar
Yenugu S, Richardson RT, Sivashanmugan P, Wang Z, O’Rand MG, French FS, et al. Antimicrobial activity of human EPPIn, an androgen regulated sperm bound protein with a whey acidic protein motif. Biol Reprod. 2004;71:1484–90.
Article
CAS
PubMed
Google Scholar
Wang Z, Widgren EE, Sivashanmugan P, O’Rand MG, Ridchardson RT. Association of EPPIN with semenogelin on human spermatozoa. Biol Reprod. 2005;72(4):1064–70.
Article
CAS
PubMed
Google Scholar
Wang Z, Widgren EE, Richardson RT, O’Rand MG. EPPIN: a molecular strategy for male contraception. In: Roldan E, Gomendio M, editors. Spermatology. Nottingham University press, Nottingham, UK. Soc Reprod Fert Supplement. 2007a;65:535–42.
CAS
Google Scholar
O’Rand MG, Widgren EE, Wang Z, Richardson RT. EPPIN: an effective target for male contraception. Mol Cell Endocrinol. 2006;250:157–62.
Article
CAS
PubMed
Google Scholar
Wang Z, Widgren EE, Richardson RT, O’Rand MG. Characterization of an EPPIN protein complex from human semen and spermatozoa. Biol Reprod. 2007;77:476–84.
Article
CAS
PubMed
Google Scholar
Mitra A, Richardson RT, O’Rand MG. Analysis of recombinant human semenogelin as an inhibitor of human sperm motility. Biol Reprod. 2010;82:489–98.
Article
CAS
PubMed
Google Scholar
O’Rand MG, Widgeren EE, Hamil KG, Silva EJ, Richardson RT. Epididymal protein targets: a brief history of the development of EPPIN as a contraceptive. J Androl. 2011;32(6):698–704.
Article
CAS
PubMed
Google Scholar
O’Rand MG, Widgren EE, Sivashanmugan P, Richardson RT, Hall SH, French FS. Reversible immuno-contraception in male monkeys immunized with EPPIN. Science. 2004;306:1189–90.
Article
CAS
PubMed
Google Scholar
O’Rand MG, Widgren EE, Beyler S, Richardson RT. Inhibition of human sperm motility by contraceptive anti-EPPIN antibodies from infertile male monkeys: effect on cAMP. Biol Reprod. 2009;80:279–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
O'Rand MG, Hamil KG, Adevai T, Zelinsky M. Inhibition of sperm motility in male macaques with EP055, a potential non-hormonal male contraceptive. PLoS One. 2018;13(4):e0195953. https://doi.org/10.1371/journal.pone.0195953.
Article
CAS
PubMed Central
PubMed
Google Scholar
Eberspaecher U, Roosterman D, Kratzschmar J, Haendler B, Habenicht UF, Becker A, et al. Mouse androgen-dependent epididymal glycoprotein CRISP-1 (DE/AEG): isolation, biochemical characterization, and expression in recombinant form. Mol Reprod Dev. 1995;42:157–72.
Article
CAS
PubMed
Google Scholar
Jalkanen J, Huhtaniemi I, Poutanen M. Mouse cysteine-rich secretory protein 4 (CRISP4): a member of the CRISP family exclusively expressed in the epididymis in an androgen-dependent manner. Biol Reprod. 2005;72:1268–74.
Article
CAS
PubMed
Google Scholar
Mizuki N, Sarapata DE, Garcia-Sanz JA, Kasahara M. The mouse male germ cell-specific gene Tpx-1: molecular structure, mode of expression in spermatogenesis, and sequence similarity to two non-mammalian genes. Mamm Genome. 1992;3(5):274–80.
Article
CAS
PubMed
Google Scholar
Haendler B, Kratzschmar J, Theuring F, Schleuning WD. Transcripts for cysteine-rich secretory protein-1 (CRISP-1; DE/AEG) and the novel related CRISP-3 are expressed under androgen control in the mouse salivary gland. Endocrinology. 1993;133:192–8.
Article
CAS
PubMed
Google Scholar
Morissette J, Kratzschmar J, Haendler B, El-Hayek R, Mochca-Morales J, Martin BM, et al. Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors. Biophys J. 1995;68:2280–8.
Article
Google Scholar
Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004;44:27–31.
Article
CAS
Google Scholar
Guo M, Teng M, Niu L, Liu Q, Huang Q, Huang Q, Hao Q. Crystal structure of the cysteine-rich secretory protein STECRISP reveals that the cysteine-rich domain has a K+ channel inhibitor-loke fold. J Biol Chem. 2005;280:12405–12.
Article
CAS
PubMed
Google Scholar
Roberts KP, Ensrud KM, Wooters JL, Nolan MA, Johnston DS, Hamilton DW. Epididymal secreted protein CRISP1 and sperm function. Mol Cell Endocrinol. 2006;250:122–7.
Article
CAS
PubMed
Google Scholar
Udby L, Bjartell A, Malm J, Egesten A, Lundwall A, Cowland JB, et al. Characterization and localization of cysteine-rich secretory protein 3 (CRISP-3) in the human male reproductive tract. J Androl. 2005;26:333–42.
Article
CAS
PubMed
Google Scholar
Cohen DJ, Da Ros VG, Busso D, Ellerman DA, Maldera JA, Goldweic N, et al. Participation of epididymal cysteine-rich secretory proteins in sperm–egg fusion and their potential use for male fertility regulation. As J Androl. 2007;9:528–32.
Article
CAS
Google Scholar
Roberts KP, Wamstad JA, Ensrud KM, Hamilton DW. Inhibition of capacitation-associated tyrosine phosphorylation signaling in rat sperm by epididymal protein Crisp-1. Biol Reprod. 2003;69:572–81.
Article
CAS
PubMed
Google Scholar
Busso D, Cohen DJ, Maldera JA, Dematteis A, Cuasnicu PS. A novel function for CRISP1 in rodent fertilization: involvement in sperm–zona pellucida interaction. Biol Reprod. 2007;77:848–54.
Article
CAS
PubMed
Google Scholar
Ellerman DA, Busso D, Maldera JA, Cuasnicú PS. Immunocontraceptive properties of recombinant sperm protein DE: implications for the development of novel contraceptives. Fertil Steril. 2008;89(1):199–205.
Article
CAS
PubMed
Google Scholar
Ellerman DA, Cohen DJ, Weigel Muñoz M, Da Ros VG, Ernesto JI, Tollner TL, et al. Immunologic behavior of human cysteine-rich secretory protein 1 (hCRISP1) in primates: prospects for immunocontraception. Fertil Steril. 2010;93(8):2551–6.
Article
CAS
PubMed
Google Scholar
Da Ros VG, Maldera JA, Willis WD, Cohen DJ, Goulding EH, Gelman DM, et al. Impaired sperm fertilizing ability in mice lacking cysteine-RIch secretory protein 1 (CRISP1). Dev Biol. 2008;320:12–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cohen DJ, Maldera JA, Vasen G, Ernesto JI, Munoz MW, Battistone MA, et al. Epididymal protein CRISP1 plays different roles during the fertilization process. J Androl. 2011;85(3):503–10.
Google Scholar
Boué F, Blais J, Sullivan R. Surface localization of P34H an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa. Biol Reprod. 1996;54(5):1009–17.
Article
PubMed
Google Scholar
Légaré C, Gaudreault C, St-Jacques S, Sullivan R. P34H sperm protein is preferentially expressed by the human corpus epididymidis. Endocrinology. 1999;140(7):3318–27.
Article
PubMed
Google Scholar
Boué F, Sullivan R. Cases of human infertility are associated with the absence of P34H an epididymal sperm antigen. Biol Reprod. 1996;54(5):1018–24.
Article
PubMed
Google Scholar
Moskovtsev SI, Jarvi K, Légaré C, Sullivan R, Mullen JB. Epididymal P34H protein deficiency in men evaluated for infertility. Fertil Steril. 2007;88(5):1455–7.
Article
PubMed
Google Scholar
Sullivan R, Légaré C, Villeneuve M, Foliguet B, Bissonnette F. Levels of P34H, a sperm protein of epididymal origin, as a predictor of conventional in vitro fertilization outcome. Fertil Steril. 2006;85(5):1557–9.
Article
CAS
PubMed
Google Scholar
Gaudreault C, Montfort L, Sullivan R. Effect of immunization of hamsters against recombinant P26h on fertility rates. Reproduction. 2002;123(2):307–13.
Article
CAS
PubMed
Google Scholar
Dubé E, Legaré C, Gaudreault C, Sullivan R. Contraceptive responses of female hamsters immunized with recombinant sperm protein P26h. Contraception. 2005;72(6):459–67.
Article
CAS
PubMed
Google Scholar
Khan SA, Suryawanshi AR, Ranpura SA, Jadhav SV, Khole VV. Identification of novel immuno-dominant epididymal sperm proteins using combinatorial approach. Reproduction. 2009;138(1):81–93.
Article
CAS
PubMed
Google Scholar
Khan SA, Jadhav SV, Suryawanshi AR, Bhonde GS, Gajbhiye RK, Khole VV. Evaluation of contraceptive potential of a novel epididymal sperm protein SFP2 in a mouse model. Am J Reprod Immunol. 2011;66(3):185–98.
Article
CAS
PubMed
Google Scholar
Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem. 1998;273:13367–70.
Article
CAS
PubMed
Google Scholar
Rusnak F, Mertz P. Calcineurin, form and function. Physiol Rev. 2000;80:1483–521.
Article
CAS
PubMed
Google Scholar
Seethalakshmi L, Menon M, Malhotra RK, et al. (1987) Effect of cyclosporine a on male reproduction in rats. J Urol 2000;138:991–995.
Article
CAS
PubMed
Google Scholar
Hisatomi A, Fujihira S, Fujimoto Y, Fujii T, Mine Y, Ohara K. Effect of Prograf (FK506) on spermatogenesis in rats. Toxicology. 1996;109:75–83.
Article
CAS
PubMed
Google Scholar
Misro MM, Chaki SP, Srinivas M, Chaube SK. Effect of cyclosporine on human sperm motility in vitro. Arch Androl. 1999;43:215–20.
Article
CAS
PubMed
Google Scholar
Castillo Bennet J, Roggero CM, Mancifesta FE, Mayorga LS. Calcineurin-mediated dephosphorylation of synaptotagmin VI is necessary for acrosomal exocytosis. J Biol Chem. 2010;285:26269–78.
Article
CAS
Google Scholar
Miyata H, Satouh Y, Mashiko D, Muto M, Nozawa K, Shiba K, et al. Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive. Science. 2015;350(6259):442–5.
Article
CAS
PubMed
Google Scholar
Pacini ESA, Castilho ACS, Hebeler-barbosa F, Pipo AS, Kiguti LRA. Contraction of rat cauda epididymis smooth muscle to α1-adrenoceptor activation is mediated by α1A-adrenoceptors. J Pharmacol Exp Ther. 2018;366(1):21–8.
Article
CAS
PubMed
Google Scholar
Martin-DeLeon P. Epididymal SPAM1 and its impact on sperm function. Mol Cell Endocr. 2006;250:114–21.
Article
CAS
Google Scholar
Raymond A, Ensslin MA, Shur BD. SED1/MFG-E8: a bi-motif protein that orchestrates diverse cellular interactions. J Cell Biochem. 2009;106(6):957–66.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ensslin MA, Shur BD. Identifcation of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell. 2003;114:405–17.
Article
CAS
PubMed
Google Scholar
Patat O, Pagin A, Siegfried A, Mitchell V, Chassaing N, Faguer S, et al. Truncating mutations in the adhesion G protein-coupled receptor G2 gene ADGRG2 cause an X-linked congenital bilateral absence of vas deferens. Am J Hum Genet. 2016;99(2):437–42.
Article
CAS
PubMed Central
PubMed
Google Scholar
Osterhoff C, Ivell R, Kirchhoff C. Cloning of a human epididymis-specific mRNA, HE6, encoding a novel member of the seven transmembrane-domain receptor superfamily. DNA Cell Biol. 1997;16:379–89.
Article
CAS
PubMed
Google Scholar
Gottwald U, Davies B, Fritsch M, Habenicht UF. New approaches for male fertility control: HE6 as an example of a putative target. Mol Cell Endocr. 2006;250:49–57.
Article
CAS
Google Scholar
Davies B, Baumann C, Kirchhoff C, Ivell R, Nubbemeyer R, Habenicht UF, et al. Targeted deletion of the epididymal receptor HE6 results in fluid dysregulation and male infertility. Mol Cell Biol. 2004;24:8642–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jones R, Mann T, Sherins RJ. Adverse effects of peroxidized lipid on human spermatozoa. Proc R Soc Lond B. 1978;201:413–7.
Article
CAS
PubMed
Google Scholar
Jones R, Mann T, Sherins RJ. Peroxidative breakdown of phospholipids in human spermatozoa: spermicidal effects of fatty acid peroxides and protective action of seminal plasma. Fertil Steril. 1979;31:531–7.
Article
CAS
PubMed
Google Scholar
Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. J Androl. 1987;8:338–48.
Article
CAS
PubMed
Google Scholar
Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. Walpole Lecture J Reprod Fertil. 1987;83:459–69.
Article
Google Scholar
Aitken RJ, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioassays. 1994;16:259–68.
Article
CAS
Google Scholar
Gomez E, Irvine DS, Aitken RJ. Evaluation of a spectro-photometrics assay for the measurement of malonyldialdehyde and 4-hydroxyalkenals in human spermatozoa: relationships with semen quality and sperm function. Int J Androl. 1998;21:81–94.
Article
CAS
PubMed
Google Scholar
Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–50.
Article
CAS
PubMed
Google Scholar
Aitken RJ. The human spermatozoa-a cell in crisis? Amoroso Lecture J Reprod Fertil. 1999;115:1–7.
Article
CAS
PubMed
Google Scholar
Aitken RJ. Founders’ lecture. Human spermatozoa: fruit of creation, seeds of doubt. Reprod Fertil Dev. 2004;16:655–64.
Article
PubMed
Google Scholar
Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol Reprod. 1989;40:183–97.
Article
Google Scholar
Suleiman SA, Ali ME, Zaki ZM, El-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17:530–7.
CAS
PubMed
Google Scholar
MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Phsyiol. 1943;138:512–8.
CAS
Google Scholar
Aitken RJ. Active oxygen in spermatozoa during epididymal transit. In: Robaire B, Hinton BT, editors. The epididymis from molecules to clinical practice. New York: Plenum Press; 2002. p. 325–8.
Google Scholar
Aitken RJ, Harkiss D, Buckingham D. Relationship between iron-catalyzed lipid peroxidation and human sperm function. J Reprod Fertil. 1993;98:257–65.
Article
CAS
PubMed
Google Scholar
Aitken RJ, Harkiss D, Buckingham D. Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol Reprod Dev. 1993;35:302–15.
Article
CAS
PubMed
Google Scholar
Drevet JR. Protection of epididymal spermatozoa from oxidative stress. In: Agarwal A, Aitken RJ, Alvarez JG, editors. Studies on men’s health and fertility- oxidative stress in applied basic research and clinical practice. New York: Springer; 2013. p. 95–118.
Google Scholar
Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, et al. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998;59:1037–46.
Article
CAS
PubMed
Google Scholar
Chabory E, Damon C, Lenoir A, Kauselman G, Kern H, Zevnik B, et al. Epididymis seleno-independent glutathione peroxidase 5 (GPx5) contributes to the maintenance of sperm DNA integrity. J Clin Invest. 2009;119:2074–85.
CAS
PubMed Central
PubMed
Google Scholar
Aitken RJ. GPx5 protects the family jewels. J Clin Invest. 2009;119:1849–51.
CAS
PubMed Central
PubMed
Google Scholar
Aitken RJ, Koopman P, Lewis SE. Seeds of concern. Nature. 2004;432(7013):48–52.
Article
CAS
PubMed
Google Scholar
Vogt PH. Azospermia factor (AZF) in Yd11: towards a molecular understanding of its function for human male fertility and spermatogenesis. Reprod BioMed Online. 2005;10:81–93.
Article
CAS
PubMed
Google Scholar
Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.
Article
CAS
PubMed
Google Scholar
Blom E. A new sterilizing and heriditary defect (the « DAG defect ») located in the bull sperm tail. Nature. 1966;209:739–40.
Article
CAS
PubMed
Google Scholar
Cooper TG, Barfield JP. Utility of infertile male models for contraception and conservation. Mol Cell Endocrinol. 2006;250:206–11.
Article
CAS
PubMed
Google Scholar
Yeung CH, Anapolski M, Cooper TG. Measurement of volume changes in mouse spermatozoa using an electronic sizing analyzer and a flow cytometer: validation and application to an infertile mouse model. J Androl. 2002;23:522–8.
PubMed
Google Scholar
Xu YX, Wagenfeld A, Yeung CH, Lehnert W, Cooper TG. Expression and location of the taurine transporter in the epididymis of infertile c-ros receptor tyrosine kinase-deficient and fertile heterozygous mice. Mol Reprod Dev. 2003;64:144–51.
Article
CAS
PubMed
Google Scholar
Yeung CH, Anapolski M, Setiawan I, Lang F, Cooper TG. Effects of putative epididymal osmolytes on sperm volume regulation of fertile and infertile c-ros tarnsgenic mice. J Androl. 2004;25:216–23.
Article
CAS
PubMed
Google Scholar
Jeulin C, Lewin LM. Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa. Hum Reprod Update. 1996;2:87–102.
Article
CAS
PubMed
Google Scholar
Yeung CH, Barfield JP, Cooper TG. Physiological volume regulation by spermatozoa. Mol Cell Endocrinol. 2006;250:98–105.
Article
CAS
PubMed
Google Scholar
Turner TT. Looking to the future of Epididymal research: why this, why now? J Androl. 2011;32(6):705–10.
Article
PubMed
Google Scholar
Naz RK, Gupta SK, Gupta JC, Vyas HK, Talwar AG. Recent advances in contraceptive vaccine development: a mini-review. Hum Reprod. 2005;20:3271–83.
Article
CAS
PubMed
Google Scholar
Naz RK. Development of genetically engineered human sperm immuno-contraceptives. J Reprod Immunol. 2009;83(1–2):145–50.
Article
CAS
PubMed Central
PubMed
Google Scholar