Russell LD, Ettlin RA, Hikim APS, Clegg ED. Histological and histopathological evaluation of the testis. Int J Androl. 1993;16(1):83–93.
Article
Google Scholar
Oudet P, Gross-Bellard M, Chambon P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell. 1975;4(4):281–300.
Article
CAS
PubMed
Google Scholar
Finch JT, Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976;73(6):1897–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carter CW. Histone packing in the nucleosome core particle of chromatin. Proc Natl Acad Sci U S A. 1978;75(8):3649–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.
Article
CAS
PubMed
Google Scholar
Campos EI, Reinberg D. Histones: annotating chromatin. Annu Rev Genet. 2009;43(1):559–99.
Article
CAS
PubMed
Google Scholar
Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111:483–8.
Article
PubMed
Google Scholar
Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem. 2004;271(17):3459–69.
Article
CAS
PubMed
Google Scholar
Zhao M, Shirley CR, Mounsey S, Meistrich ML. Nucleoprotein transitions during spermiogenesis in mice with transition nuclear protein Tnp1 and Tnp2 mutations. Biol Reprod. 2004;71(3):1016–25.
Article
CAS
PubMed
Google Scholar
Kimmins S, Sassone-Corsi. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;433(7033):583–9.
Article
CAS
Google Scholar
Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.
CAS
PubMed
PubMed Central
Google Scholar
Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schübeler D, Stadler MB, Peters AHFM. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol. 2010;17(6):679–87.
Article
CAS
PubMed
Google Scholar
Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44(4):569–74.
Article
CAS
PubMed
Google Scholar
Ward WS. Regulating DNA supercoiling: sperm points the way. Biol Reprod. 2011;84(5):841–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balhorn R, Brewer L, Corzett M. DNA condensation by protamine and arginine-rich peptides: analysis of toroid stability using single DNA molecules. Mol Reprod Dev. 2000;56(2S):230–4.
Article
CAS
PubMed
Google Scholar
Li G, Zhu P. Structure and organization of chromatin fiber in the nucleus. FEBS Lett. 2015;589(20):2893–904.
Article
CAS
PubMed
Google Scholar
Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Côté J. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell. 2004;16(6):979–90.
Article
CAS
PubMed
Google Scholar
Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J. 2010;277(3):599–604.
Article
CAS
PubMed
Google Scholar
Maeshima K, Hihara S, Eltsov M. Chromatin structure: does the 30-nm fiber exist in vivo? Curr Opin Cell Biol. 2010;22:291–7.
Article
CAS
PubMed
Google Scholar
Daban JR. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Micron Oxf Engl. 2011;42:733–50.
CAS
Google Scholar
Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol. 2003;23(15):5354–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703–8.
Article
CAS
PubMed
Google Scholar
McPherson S, Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem. 1993;37(2):109–28.
CAS
PubMed
Google Scholar
Smith A, Haaf T. DNA nicks and increased sensitivity of DNA to fluorescence in situ end labeling during functional spermiogenesis. Biotechniques. 1998;25(3):496–502.
CAS
PubMed
Google Scholar
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.
Article
CAS
PubMed
Google Scholar
Munshi A, Shafi G, Aliya N, Jyothy A. Histone modifications dictate specific biological readouts. J Genet Genomics Yi Chuan Xue Bao. 2009;36:75–88.
Article
CAS
PubMed
Google Scholar
Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis: new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70(4):910–8.
Article
CAS
PubMed
Google Scholar
Laberge RM, Boissonneault G. On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod. 2005;73(2):289–96.
Article
CAS
PubMed
Google Scholar
Chen JL, Longo FJ. Expression and localization of DNA topoisomerase II during rat spermatogenesis. Mol Reprod Dev. 1996;45(1):61–71.
Article
CAS
PubMed
Google Scholar
Meyer-Ficca ML, Lonchar JD, Credidio C, Ihara M, Li Y, Wang ZQ, Meyer RG. Disruption of poly(ADP-ribose) homeostasis affects spermiogenesis and sperm chromatin integrity in mice. Biol Reprod. 2009;8(1):46–55.
Article
CAS
Google Scholar
Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG. Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod. 2011;84(5):900–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talbert PB, Henikoff S. Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 2010;11:264–75.
Article
CAS
PubMed
Google Scholar
Lewis JD, Abbott DW, Ausió J. A haploid affair: core histone transitions during spermatogenesis. Biochem Cell Biol. 2003;81:131–40.
Article
CAS
PubMed
Google Scholar
Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;434:583–9.
Article
CAS
PubMed
Google Scholar
Kota SK, Feil R. Epigenetic transitions in germ cell development and meiosis. Dev Cell. 2010;19:675–86.
Article
CAS
PubMed
Google Scholar
Fenic I, Sonnack V, Failing K, Bergmann M, Steger K. In vivo effects of histone-deacetylase inhibitor trichostatin-A on murine spermatogenesis. J Androl. 2004;25(5):811–8.
Article
CAS
PubMed
Google Scholar
Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development. 2007;134:3507–15.
Article
CAS
PubMed
Google Scholar
Dhar S, Thota A, Rao MRS. Insights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis. J Biol Chem. 2012;287:6387–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol. 2003;23:5354–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiva M, Saperas N, Ribes E. Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks. Tissue Cell. 2011;43:367–76.
Article
CAS
PubMed
Google Scholar
Martins RP, Ostermeier GC, Krawetz SA. Nuclear matrix interactions at the human protamine domain: a working model of potentiation. J Biol Chem. 2004;279:51862–8.
Article
CAS
PubMed
Google Scholar
Dadoune JP. Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech. 2003;61:56–75.
Article
CAS
PubMed
Google Scholar
Singh J, Rao MR. Interaction of rat testis protein, TP, with nucleic acids in vitro. Fluorescence quenching, UV absorption, and thermal denaturation studies. J Biol Chem. 1987;262:734–40.
CAS
PubMed
Google Scholar
Singh J, Rao MR. Interaction of rat testis protein, TP, with nucleosome core particle. Biochem Int. 1988;17:701–10.
CAS
PubMed
Google Scholar
Akama K, Kondo M, Sato H, Nakano M. Transition protein 4 from boar late spermatid nuclei is a topological factor that stimulates DNA-relaxing activity of topoisomerase I. FEBS Lett. 1999;442:189–92.
Article
CAS
PubMed
Google Scholar
Caron N, Veilleux S, Boissonneault G. Stimulation of DNA repair by the spermatidal TP1 protein. Mol Reprod Dev. 2001;58:437–43.
Article
CAS
PubMed
Google Scholar
Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, et al. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci U S A. 2000;97:4683–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baskaran R, Rao MRS. Interaction of spermatid-specific protein TP2 with nucleic acids, in vitro. A comparative study with TP1. J Biol Chem. 1990;265:21039–47.
CAS
PubMed
Google Scholar
Lévesque D, Veilleux S, Caron N, Boissonneault G. Architectural DNA-Binding Properties of the Spermatidal Transition Proteins 1 and 2. Biochem Biophys Res Commun. 1998;252:602–9.
Article
PubMed
Google Scholar
Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, et al. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol. 2001;21:7243–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shirley CR, Hayashi S, Mounsey S, Yanagimachi R, Meistrich ML. Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice. Biol Reprod. 2004;71:1220–9.
Article
CAS
PubMed
Google Scholar
Eirín-López JM, Ausió J. Origin and evolution of chromosomal sperm proteins. BioEssays News Rev Mol Cell Dev Biol. 2009;31:1062–70.
Article
CAS
Google Scholar
Rooney AP, Zhang J, Nei M. An unusual form of purifying selection in a sperm protein. Mol Biol Evol. 2000;17(2):278–83.
Article
CAS
PubMed
Google Scholar
Aoki VW, Carrell DT. Human protamines and the developing spermatid: their structure, function, expression and relationship with male infertility. Asian J Androl. 2003;5:315–24.
CAS
PubMed
Google Scholar
Hermo L, Pelletier R-M, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: Changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech. 2010;73:279–319.
Article
CAS
PubMed
Google Scholar
Martin-Coello J, Gomendio M, Roldan ERS. Protamine 3 shows evidence of weak, positive selection in mouse species (genus Mus), but it is not a protamine. Biol Reprod. 2011;84:320–6.
Article
CAS
PubMed
Google Scholar
Balhorn R. Mammalian protamines: structure and molecular interactions. In: Adolph KW, editor. Molecular biology of chromosome function. New York: Springer; 1989. p. 366–95.
Chapter
Google Scholar
Debarle M, Martinage A, Sautiere P, Chevaillier P. Persistence of protamine precursors in mature sperm nuclei of the mouse. Mol Reprod Dev. 1995;40:84–90.
Article
CAS
PubMed
Google Scholar
Yoshii T, Kuji N, Komatsu S, Iwahashi K, Tanaka Y, Yoshida H, et al. Fine resolution of human sperm nucleoproteins by two-dimensional electrophoresis. Mol Hum Reprod. 2005;11:677–81.
Article
CAS
PubMed
Google Scholar
Björndahl L, Kvist U. Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod. 2010;16:23–9.
Article
PubMed
CAS
Google Scholar
Smith TB, Dun MD, Smith ND, Curry BJ, Connaughton HS, Aitken RJ. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J Cell Sci. 2013;126(6):1488–97.
Article
CAS
PubMed
Google Scholar
Vilfan ID, Conwell CC, Hud NV. Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem. 2004;279(19):20088–95.
Article
CAS
PubMed
Google Scholar
Hud NV, Milanovich FP, Balhorn R. Evidence of novel secondary structure in DNA-bound protamine is revealed by Raman spectroscopy. Biochemistry (Mosc). 1994;33:7528–35.
Article
CAS
Google Scholar
Fita I, Campos JL, Puigjaner LC, Subirana JA. X-ray diffraction study of DNA complexes with arginine peptides and their relation to nucleoprotamine structure. J Mol Biol. 1983;167:157–77.
Article
CAS
PubMed
Google Scholar
Prieto MC, Maki AH, Balhorn R. Analysis of DNA − protamine interactions by optical detection of magnetic resonance. Biochemistry (Mosc). 1997;36:11944–51.
Article
CAS
Google Scholar
Balhorn R, Kellaris K, Corzett M, Clancy C. 7-aminoactinomycin D binding and the final stages of sperm chromatin processing in the mouse. Gamete Res. 1985;12:411–22.
Article
CAS
Google Scholar
Bench G, Corzett M h, Kramer C e, Grant PG, Balhorn R. Zinc is sufficiently abundant within mammalian sperm nuclei to bind stoichiometrically with protamine 2. Mol Reprod Dev. 2000;56:512–9.
Article
CAS
PubMed
Google Scholar
Allen MJ, Bradbury EM, Balhorn R. AFM analysis of DNA-protamine complexes bound to mica. Nucleic Acids Res. 1997;25:2221–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brewer LR, Corzett M, Balhorn R. Protamine-induced condensation and decondensation of the same DNA molecule. Science. 1999;286:120–3.
Article
CAS
PubMed
Google Scholar
Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8:227.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ward WS, Partin AW, Coffey DS. DNA loop domains in mammalian spermatozoa. Chromosoma. 1989;98:153–9.
Article
CAS
PubMed
Google Scholar
Barone JG, De Lara J, Cummings KB, Ward WS. DNA organization in human spermatozoa. J Androl. 1994;15:139–44.
CAS
PubMed
Google Scholar
Sotolongo B, Lino E, Ward WS. Ability of hamster spermatozoa to digest their own DNA. Biol Reprod. 2003;69:2029–35.
Article
CAS
PubMed
Google Scholar
Ward WS, Coffey DS. Identification of a sperm nuclear annulus: a sperm DNA anchor. Biol Reprod. 1989;41:361–70.
Article
CAS
PubMed
Google Scholar
McCarthy S, Ward WS. Functional aspects of mammalian sperm chromatin. Hum Fertil Camb Engl. 1999;2:56–60.
Article
Google Scholar
Nadel B, Lara J, Finkernagel SW, Ward WS. Cell-specific organization of the 5S ribosomal RNA gene cluster DNA loop domains in spermatozoa and somatic cells. Biol Reprod. 1995;53:1222–8.
Article
CAS
PubMed
Google Scholar
Shaman JA, Yamauchi Y, Ward WS. Function of the sperm nuclear matrix. Arch Androl. 2007;53:135–40.
Article
CAS
PubMed
Google Scholar
Shaman JA, Yamauchi Y, Ward WS. The sperm nuclear matrix is required for paternal DNA replication. J Cell Biochem. 2007;102:680–8.
Article
CAS
PubMed
Google Scholar
Anachkova B, Djeliova V, Russev G. Nuclear matrix support of DNA replication. J Cell Biochem. 2005;96:951–61.
Article
CAS
PubMed
Google Scholar
Wilson RHC, Coverley D. Relationship between DNA replication and the nuclear matrix. Genes Cells. 2013;18:17–31.
Article
CAS
PubMed
Google Scholar
Balhorn R, Gledhill BL, Wyrobek AJ. Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry (Mosc). 1977;16:4074–80.
Article
CAS
Google Scholar
Bench GS, Friz AM, Corzett MH, Morse DH, Balhorn R. DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry. 1996;23:263–71.
Article
CAS
PubMed
Google Scholar
Tovich PR, Oko RJ. Somatic histones are components of the perinuclear theca in bovine spermatozoa. J Biol Chem. 2003;278(34):32431–8.
Article
CAS
PubMed
Google Scholar
Tanphaichitr N, Sobhon P, Taluppeth N, Chalermisarachai P. Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp Cell Res. 1978;117:347–56.
Article
CAS
PubMed
Google Scholar
Arpanahi A, Brinkworth M, Iles D, Krawetz SA, Paradowska A, Platts AE, et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 2009;19:1338–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8.
CAS
PubMed
PubMed Central
Google Scholar
Van der Heijden GW, Ramos L, Baart EB, van den Berg IM, Derijck AA, van der Vlag J, et al. Sperm-derived histones contribute to zygotic chromatin in humans. BioMed Cent Dev Biol. 2008;8:34.
Article
CAS
Google Scholar
Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, Shiota H, Debenardi A, Hery P, Curtet S, Jamshidikia M, Barral S, Holota H, Bergon A, Lopez F, Guardiola P, Pernet K, Imbert J, Petosa C, Tan M, Zhao Y, Gerard M, Kochbin S. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B varaint TH2B. Genes Dev. 2013;27(15):1680–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ajduk A, Yamauchi Y, Ward MA. Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod. 2008;75:442–51.
Article
CAS
Google Scholar
Jenkins TG, Carrell DT. Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet. 2012;3:143.
Article
PubMed
PubMed Central
Google Scholar
Jenkins TG, Carrell DT. The sperm epigenome and potential implications for the developing embryo. Reproduction. 2012;143:727–34.
Article
CAS
PubMed
Google Scholar
Zalensky AO, Siino JS, Gineitis AA, Zalenskaya IA, Tomilin NV, Yau P, et al. Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem. 2002;277:43474–80.
Article
CAS
PubMed
Google Scholar
Li Y, Lalancette C, Miller D, Krawetz SA. Characterization of nucleohistone and nucleoprotamine components in the mature human sperm nucleus. Asian J Androl. 2008;10:535–41.
Article
CAS
PubMed
Google Scholar
Kocer A, Henry-Berger J, Noblanc, Champroux A, Pogorelcnik, Guiton R, et al. Oxidative DNA damage in mouse sperm chromosomes:size matters. Free Radic Biol Med. 2015;89:993–1002.
Article
CAS
PubMed
Google Scholar
Zalenskaya IA, Bradbury EM, Zalensky AO. Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun. 2000;279:213–8.
Article
CAS
PubMed
Google Scholar
Noblanc A, Damon-Soubeyrand C, Karrich B, Henry-Berger J, Cadet R, Saez F, et al. DNA oxidative damage in mammalian spermatozoa: where and why is the male nucleus affected? Free Radic Biol Med. 2013;65:719–23.
Article
CAS
PubMed
Google Scholar
Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16:30–6.
Article
CAS
PubMed
Google Scholar
Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8.
CAS
PubMed
PubMed Central
Google Scholar
Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schübeler D, van der Vlag J, Stadler MB, Peters AHFM. Molecular determinants of nucleosome retention at CpG- rich sequences in mouse spermatozoa. Nat Struct Mol Biol. 2013;20(7):868–75.
Article
CAS
PubMed
Google Scholar
Greaves IK, Rangasamy D, Devoy M, Marshall Graves JA, Tremethick DJ. The X and Y chromosomes assemble into H2A.Z-containing facultative heterochromatin following meiosis. Mol Cell Biol. 2006;26(14):5394–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunner AM, Nanni P, Mansuy IM. Epigenetic marking of sperm by post- translational modification of histones and protamines. Epigenetics Chromatin. 2014;7(1):2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zalensky AO, Breneman JW, Zalenskaya IA, Brinkley BR, Bradbury EM. Organization of centromeres in the decondensed nuclei of mature human sperm. Chromosoma. 1993;102:509–18.
Article
CAS
PubMed
Google Scholar
Mudrak O, Tomilin N, Zalensky A. Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci. 2005;118:4541–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hazzouri M, Rousseaux S, Mongelard F, Usson Y, Pelletier R, Faure AK, et al. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod Dev. 2000;55:307–15.
Article
CAS
PubMed
Google Scholar
Zelenskaya IA, Zalensky AO. Non-random positioning of chromosomes in human sperm nuclei. Chromosome Res. 2004;12:163–73.
Article
Google Scholar
Mudrak OS, Nazarov IB, Jones EL, Zalensky AO. Positioning of chromosomes in human spermatozoa is determined by ordered centromere arrangement. PLoS One. 2012;7:e52944.
Article
CAS
PubMed
PubMed Central
Google Scholar
Millan NM, Lau P, Hann M, Ioannou D, Hoffman D, Barrionuevo M, et al. Hierarchical radial and polar organisation of chromosomes in human sperm. Chromosome Res. 2012;20:875–87.
Article
CAS
PubMed
Google Scholar
Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reprod Camb Engl. 2010;139(2):287–301.
CAS
Google Scholar
Carrell DT. Epigenetics of the male gamete. Fertil Steril. 2012;97(2):267–74.
Article
CAS
PubMed
Google Scholar
Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J, Agarwal A. Epigenetics and its role in male infertility. J Assist Reprod Genet. 2012;29(3):213–23.
Article
PubMed
PubMed Central
Google Scholar
Castillo J, Estanyol JM, Ballescá JL, Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl. 2015;17(4):601–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boitrelle F, Albert M, Petit JM, Ferfouri F, Wainer R, Bergere M, Bailly M, Vialard F, Selva J. Small human sperm vacuoles observed under high magnification are pocket-like nuclear concavities linked to chromatin condensation failure. Reprod Biomed Online. 2013;27(2):201–11.
Article
CAS
PubMed
Google Scholar
Garolla A, Fortini D, Menegazzo M, De Toni L, Nicoletti V, Moretti A, Selice R, Engl B, Foresta C. High-power microscopy for selecting spermatozoa for ICSI by physiological status. Reprod Biomed Online. 2008;17(5):610–6.
Article
PubMed
Google Scholar
Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345(14):1067–8.
Article
CAS
PubMed
Google Scholar
Knez K, Tomazevic T, Zorn B, Vrtacnik-Bokal E, Virant-Klun I. Intracytoplasmic morphologically selected sperm injection improves development and quality of preimplantation embryos in teratozoospermia patients. Reprod Biomed Online. 2012;25(2):168–79.
Article
PubMed
Google Scholar
Vanderzwalmen P, Hiemer A, Rubner P, Bach M, Neyer A, Stecher A, Uher P, Zintz M, Lejeune B, Vanderzwalmen S, Cassuto G, Zech NH. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online. 2008;17(5):617–27.
Article
PubMed
Google Scholar
de Almeida Ferreira Braga DP, Setti AS, Figueira RCS, Nichi M, Martinhago CD, Iaconelli A, Borges E. Sperm organelle morphologic abnormalities: contributing factors and effects on intracytoplasmic sperm injection cycles outcomes. Urology. 2011;78(4):786–91.
Article
PubMed
Google Scholar
Tanaka A, Nagayoshi M, Tanaka I, Kusunoki H. Human sperm head vacuoles are physiological structures formed during the sperm development and maturation process. Fertil Steril. 2012;98(2):315–20.
Article
PubMed
Google Scholar
Hazout A, Dumont-Hassan M, Junca AM, Cohen Bacrie P, Tesarik J. High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online. 2006;12(1):19–25.
Article
PubMed
Google Scholar
Simon L, Brunborg G, Stevenson M, Lutton D, McManus J, Lewis SEM. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum Reprod Oxf Engl. 2010;25(7):1594–608.
Article
CAS
Google Scholar
Boitrelle F, Guthauser B, Alter L, Bailly M, Bergere M, Wainer R, Vialard F, Albert M, Selva J. High-magnification selection of spermatozoa prior to oocyte injection: confirmed and potential indications. Reprod Biomed Online. 2014;28(1):6–13.
Article
CAS
PubMed
Google Scholar
Meyer-Ficca ML, Lonchar JD, Ihara M, Bader JJ, Meyer RG. Alteration of poly(ADP-ribose) metabolism affects murine sperm nuclear architecture by impairing pericentric heterochromatin condensation. Chromosoma. 2013;122(4):319–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG. Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod. 2011;84(5):900–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Dev Camb Engl. 2007;134(19):3507–15.
CAS
Google Scholar
Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML, Mills AA. Chd5 orchestrates chromatin remodeling during sperm development. Nat Commun. 2014;5:3812.
CAS
PubMed
PubMed Central
Google Scholar
Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell. 2010;18(3):371–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shirley CR, Hayashi S, Mounsey S, Yanagimachi R, Meistrich ML. Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice. Biol Reprod. 2004;71(4):1220–9.
Article
CAS
PubMed
Google Scholar
Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.
Article
CAS
PubMed
Google Scholar
Nanassy L, Liu L, Griffin J, Carrell DT. The clinical utility of the protamine 1/protamine 2 ratio in sperm. Protein Pept Lett. 2011;18(8):772–7.
Article
CAS
PubMed
Google Scholar
de Yebra L, Ballescà JL, Vanrell JA, Bassas L, Oliva R. Complete selective absence of protamine P2 in humans. J Biol Chem. 1993;268(14):10553–7.
PubMed
Google Scholar
Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306.
Article
CAS
PubMed
Google Scholar
Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JBM, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;6(26):741–8.
Article
CAS
Google Scholar
Simon L, Castillo J, Oliva R, Lewis SEM. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online. 2011;23(6):724–34.
Article
CAS
PubMed
Google Scholar
Takeda N, Yoshinaga K, Furushima K, Takamune K, Li Z, Abe S, Aizawa S, Yamamura K. Viable offspring obtained from Prm1-deficient sperm in mice. Sci Rep. 2016;2(6):27409. doi:10.1038/srep27409.
Article
CAS
Google Scholar
Perrin A, Caer E, Oliver-Bonet M, Navarro J, Benet J, Amice V, de Braekeleer M, Morel F. DNA fragmentation and meiotic segregation in sperm of carriers of a chromosomal structural abnormality. Fertil Steril. 2009;92(2):583–9.
Article
PubMed
Google Scholar
Carrell DT, Wilcox AL, Lowy L, Peterson CM, Jones KP, Erickson L, Campbell B, Branch DW, Hatasaka HH. Elevated sperm chromosome aneuploidy and apoptosis in patients with unexplained recurrent pregnancy loss. Obstet Gynecol. 2003;101(6):1229–35.
PubMed
Google Scholar
Muriel L, Goyanes V, Segrelles E, Gosálvez J, Alvarez JG, Fernández JL. Increased aneuploidy rate in sperm with fragmented DNA as determined by the sperm chromatin dispersion (SCD) test and FISH analysis. J Androl. 2007;28(1):38–49.
Article
CAS
PubMed
Google Scholar
Enciso M, Alfarawati S, Wells D. Increased numbers of DNA-damaged spermatozoa in samples presenting an elevated rate of numerical chromosome abnormalities. Hum Reprod. 2013;28(6):1707–15.
Article
CAS
PubMed
Google Scholar
Acloque H, Bonnet-Garnier A, Mompart F, Pinton A, Yerle-Bouissou M. Sperm nuclear architecture is locally modified in presence of a robertsonian translocation t(13;17). PLoS One. 2013;8(10):e78005.
Article
CAS
PubMed
PubMed Central
Google Scholar
McAuliffe ME, Williams PL, Korrick SA, Dadd R, Marchetti F, Martenies SE, Perry MJ. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay. Hum Reprod Oxf Engl. 2014;29(10):2148–55.
Article
CAS
Google Scholar
Marchetti F, Bishop J, Gingerich J, Wyrobek AJ. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair. Sci Rep. 2015;5:7689.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conrad M, Moreno SG, Sinowatz F, Ursini F, Kölle S, Roveri A, Brielmeier M, Wurst W, Maiorino M, Bornkamm GW. The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol. 2005;25(17):7637–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noblanc A, Peltier M, Damon-Soubeyrand C, Kerchkove N, Chabory E, Vernet P, Saez F, Cadet R, Janny L, Pons-Rejraji H, Conrad M, Drevet JR, Kocer A. Epididymis response partly compensates for spermatozoa oxidative defects in snGPx4 and GPx5 double mutant mice. PLoS One. 2012;7(6):e38565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J, Schoor M, Gottwald U, Habenicht U, Drevet JR, Vernet P. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest. 2009;119(7):2074–85.
CAS
PubMed
PubMed Central
Google Scholar
Noblanc A, Kocer A, Drevet JR. Post-testicular protection of male gametes from oxidative damage. The role of the epididymis. Med Sci (Paris). 2012;28(5):519–25.
Article
Google Scholar
Noblanc A, Kocer A, Drevet JR. Recent knowledge concerning mammalian sperm chromatin organization and its potential weaknesses when facing oxidative challenge. Basic Clin Androl. 2014;24:6. doi:10.1186/2051-4190-24-6.
Article
PubMed
PubMed Central
Google Scholar
Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2015;28(2):1–10.
Article
CAS
Google Scholar
Pentikäinen V, Erkkilä K, Dunkel L. Fas regulates germ cell apoptosis in the human testis in vitro. Am J Physiol. 1999;276(2):310–6.
Google Scholar
Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011;13(1):36–42.
Article
CAS
PubMed
Google Scholar
Lin WW, Lamb DJ, Wheeler TM, Abrams J, Lipshultz LI, Kim ED. Apoptotic frequency is increased in spermatogenic maturation arrest and hypospermatogenic states. J Urol. 1997;158(5):1791–3.
Article
CAS
PubMed
Google Scholar
Almeida C, Sousa M, Barros A. Phosphatidylserine translocation in human spermatozoa from impaired spermatogenesis. Reprod Biomed Online. 2009;19(6):770–7.
Article
CAS
PubMed
Google Scholar
McPherson SM, Longo FJ. Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Dev Biol. 1993;158(1):122–30.
Article
CAS
PubMed
Google Scholar
Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70(4):910–8.
Article
CAS
PubMed
Google Scholar
Zini A, de Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl. 1993;16(3):183–8.
Article
CAS
PubMed
Google Scholar
Tremellen K. Oxidative stress and male infertility-a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.
Article
CAS
PubMed
Google Scholar
Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res. 1996;351(2):199–203.
Article
PubMed
Google Scholar
Villalta J, Ballescà JL, Nicolás JM, de Osaba MJ M, Antúnez E, Pimentel C. Testicular function in asymptomatic chronic alcoholics: relation to ethanol intake. Alcohol Clin Exp Res. 1997;21(1):128–33.
CAS
PubMed
Google Scholar
Palmer NP, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis. 2012;2(4):253–63.
Article
PubMed
PubMed Central
Google Scholar
Hauser R, Meeker JD, Singh NP, Silva MJ, Ryan L, Duty S, Calafat AM. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod Oxf Engl. 2007;22(3):688–95.
Article
CAS
Google Scholar
Chitra KC, Sujatha R, Latchoumycandane C, Mathur PP. Effect of lindane on antioxidant enzymes in epididymis and epididymal sperm of adult rats. Asian J Androl. 2001;3(3):205–8.
CAS
PubMed
Google Scholar
Brackett NL, Ibrahim E, Grotas JA, Aballa TC, Lynne CM. Higher sperm DNA damage in semen from men with spinal cord injuries compared with controls. J Androl. 2008;29(1):93–9.
Article
PubMed
Google Scholar
Shekarriz M, DeWire DM, Thomas AJ, Agarwal A. A method of human semen centrifugation to minimize the iatrogenic sperm injuries caused by reactive oxygen species. Eur Urol. 1995;28(1):31–5.
CAS
PubMed
Google Scholar
Gozàlvez J, Lopez-Fernandez C, Fernandez JL, Esteves SC, Johnston SD. Unpacking the mysteries of sperm DNA fragmentation: Ten frequently asked questions. J Reprod Biotechnol Fertil. 2015;4:1–16. doi:10.1177/2058915815594454.
Menezo YJ, Russo G, Tosti E, Mouatassim SE, Benkhalifa M. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet. 2007;24(11):513–20.
Article
PubMed
PubMed Central
Google Scholar
Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome- wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod Oxf Engl. 2011;26(9):2558–69.
Article
CAS
Google Scholar
Gawecka JE, Marh J, Ortega M, Yamauchi Y, Ward MA, Ward WS. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One. 2013;8(2):e56385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernández-Gonzalez R, Moreira PN, Pérez-Crespo M, Sánchez-Martín M, Ramirez MA, Pericuesta E, Bilbao A, Bermejo-Alvarez P, Hourcade JD, de Fonseca FR, Gutiérrez- Adán A. Long-term effects of mouse intracytoplasmic sperm injection with DNA- fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78(4):761–72.
Article
PubMed
CAS
Google Scholar
Burruel V, Klooster KL, Chitwood J, Ross PJ, Meyers SA. Oxidative damage to rhesus macaque spermatozoa results in mitotic arrest and transcript abundance changes in early embryos. Biol Reprod. 2013;89(3):72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, Aitken RJ. Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Mol Hum Reprod. 2015;21(6):502–15.
Article
PubMed
Google Scholar
Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26(7):1628–40.
Article
PubMed
Google Scholar
De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, Nixon B, Aitken RJ. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2’- deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81(3):517–24.
Article
PubMed
CAS
Google Scholar
Stocks SJ, Agius RM, Cooley N, Harrison KL, Brison DR, Horne G, Gibbs A, Povey AC. Alkylation of sperm DNA is associated with male factor infertility and a reduction in the proportion of oocytes fertilised during assisted reproduction. Mutat Res Toxicol Environ Mutagen. 2010;698(1–2):18–23.
Article
CAS
Google Scholar
Katen AL, Roman SD. The genetic consequences of paternal acrylamide exposure and potential for amelioration. Mutat Res. 2015;777:91–100.
Article
CAS
PubMed
Google Scholar
Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.
Article
CAS
PubMed
Google Scholar
Sharma U, Rando OJ. Father-son chats: inheriting stress through sperm RNA. Cell Metab. 2014;19(6):894–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Tsuprykov O, Yang X, Hocher B. Paternal programming of offspring cardiometabolic diseases in later life. J Hypertens. 2016. Epub ahead of print.
Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10(7):e1004458.
Article
PubMed
PubMed Central
CAS
Google Scholar
Malaspina D, Gilman C, Kranz TM. Paternal age and mental health of offspring. Fertil Steril. 2015;103(6):1392–6.
Article
PubMed
PubMed Central
Google Scholar
Castillo J, Estanyol JM, Ballescá JL, Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl. 2015;17(4):601–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351(6271):391–6.
Article
CAS
PubMed
Google Scholar
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351(6271):397–400.
Article
CAS
PubMed
Google Scholar
Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17(5):667–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lord T, Aitken RJ. Fertilization stimulates 8-hydroxy-2’-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. Dev Biol. 2015;406(1):1–13.
Article
CAS
PubMed
Google Scholar
Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122(4):497–506.
Article
CAS
PubMed
Google Scholar
Lane M, McPherson NO, Fullston T, Spillane M, Sandeman L, Kang WX, Zander-Fox DL. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring. PLoS One. 2014;9(7):e100832.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adewoye AB, Lindsay SJ, Dubrova YE, Hurles ME. The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline. Nat Commun. 2015;6:6684.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feinberg JI, Bakulski KM, Jaffe AE, Tryggvadottir R, Brown SC, Goldman LR, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Fallin MD, Feinberg AP. Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort. Int J Epidemiol. 2015; 44(4):1109–210.
Benchaib M. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18(5):1023–8.
Article
PubMed
Google Scholar
Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.
Article
CAS
PubMed
Google Scholar
Bianchi PG, Manicardi GC, Urner F, Campana A, Sakkas D. Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of hidden anomalies in normal spermatozoa. Mol Hum Reprod. 1996;2(3):139–44.
Article
CAS
PubMed
Google Scholar
Kim HS, Kang MJ, Kim SA, Oh SK, Kim H, Ku SY, Kim SH, Moon SY, Choi YM. The utility of sperm DNA damage assay using toluidine blue and aniline blue staining in routine semen analysis. Clin Exp Reprod Med. 2013;40(1):23–8.
Article
PubMed
PubMed Central
Google Scholar
Terquem A, Dadoune JP. Aniline blue staining of human spermatozoon chromatin. Evaluation of nuclear maturation. In: André J, editor. The sperm cell. Netherlands: Springer; 1983. p. 249–52.
Chapter
Google Scholar
Perdrix A, Travers A, Chelli MH, Escalier D, Do Rego JL, Milazzo JP, Mousset-Siméon N, Macé B, Rives N. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod Oxf Engl. 2011;26(1):47–58.
Article
CAS
Google Scholar
Franco Jr JG, Mauri AL, Petersen CG, Massaro FC, Silva LFI, Felipe V, Cavagna M, Pontes A, Baruffi RLR, Oliveira JBA, Vagnini LD. Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int J Androl. 2012;35(1):46–51.
Article
PubMed
Google Scholar
Franco JG, Baruffi RLR, Mauri AL, Petersen CG, Oliveira JBA, Vagnini L. Significance of large nuclear vacuoles in human spermatozoa: implications for ICSI. Reprod Biomed Online. 2008;17(1):42–5.
Article
PubMed
Google Scholar
Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345(14):1067–8.
Article
CAS
PubMed
Google Scholar
Erenpreisa J, Freivalds T, Roach H, Alston R. Apoptotic cell nuclei favour aggregation and fluorescence quenching of DNA dyes. Histochem Cell Biol. 1997;108(1):67–75.
Article
CAS
PubMed
Google Scholar
Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, de Angelis P, Claussen OP. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod Oxf Engl. 1999;14(4):1039–49.
Article
CAS
Google Scholar
Evenson DP. Sperm chromatin structure assay, SCSAR. Methods Mol Biol. 2013;927:147–64.
Article
CAS
PubMed
Google Scholar
Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207(1):202–5.
Article
CAS
PubMed
Google Scholar
Klaude M, Eriksson S, Nygren J, Ahnström G. The comet assay: mechanisms and technical considerations. Mutat Res. 1996;363(2):89–96.
Article
PubMed
Google Scholar
Fernández JL, Muriel M, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59–66.
PubMed
Google Scholar
Fernández JL, Vázquez-Gundín F, Delgado A, Goyanes VJ, Ramiro-Díaz J, de la Torre J, Gosálvez J. DNA breakage detection-FISH (DBD-FISH) in human spermatozoa: technical variants evidence different structural features. Mutat Res. 2000;453(1):77–82.
Article
PubMed
Google Scholar
Ohno M, Sakumi K, Fukumura R, Furuichi M, Iwasaki Y, Hokama M, Ikemura T, Tsuzuki T, Gondo Y, Nakabeppu Y. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep. 2014;4:4689.
Article
PubMed
PubMed Central
CAS
Google Scholar
WHO laboratory manual for the examination and processing of human semen. WHO. http://apps.who.int/iris/bitstream/10665/44261/1/9789241547789_eng.pdf.
Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, Rylander L. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case–control study. Int J Androl. 2010;33(1):221–7.
Article
Google Scholar
Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;210(4474):1131–3.
Article
CAS
PubMed
Google Scholar
Nygren KG, Sullivan E, Zegers-Hochschild F, Mansour R, Ishihara O, Adamson GD, de Mouzon J. International Committee for Monitoring Assisted Reproductive Technology (ICMART) world report: assisted reproductive technology 2003. Fertil Steril. 2011;95(7):2209–22.
Article
PubMed
Google Scholar
Palermo GD, Neri QV, Takeuchi T, Rosenwaks Z. ICSI: where we have been and where we are going. Semin Reprod Med. 2009;27(2):191–201.
Article
PubMed
Google Scholar
Hourcade JD, Pérez-Crespo M, Fernández-González R, Pintado B, Gutiérrez-Adán A. Selection against spermatozoa with fragmented DNA after postovulatory mating depends on the type of damage. Reprod Biol Endocrinol. 2010;8:9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta- analysis. Reprod Biomed Online. 2015;30(2):120–7.
Article
CAS
PubMed
Google Scholar
Kumar SB. Improvement in Sperm DNA Quality Following Simple Life Style Intervention: A Study in Fathers of Children with Non-Familial Sporadic Heritable Retinoblastoma. J Clin Case Rep. 2015;5:509. doi:10.4172/2165-7920.1000509.
Gharagozloo P, Gutiérrez-Adán A, Champroux A, Noblanc A, Kocer A, Calle A, Pérez-Cerezales S, Pericuesta E, Polhemus A, Moazamian A, Drevet JR, Aitken RJ. A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: promising preclinical evidence from animal models. Hum Reprod. 2016;31(2):252–62.
Article
CAS
PubMed
Google Scholar