Hedger MP, Hales B: Immunophysiology of the male reproductive tract. Knobil and Neill’s physiology of reproduction. Edited by: Neill JD. 2006, Amsterdam: Elsevier, 1195-1286.
Chapter
Google Scholar
Meinhardt A, Hedger MP: Immunological, paracrine and endocrine aspects of testicular immune privilege. Mol Cell Endocrinol. 2010, 335: 60-68.
Article
PubMed
Google Scholar
Hedger MP: Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl. 2011, 32 (6): 625-640. 10.2164/jandrol.111.012989.
Article
CAS
PubMed
Google Scholar
Setchell BP, Voglmayr JK, Waites GM: A blood-testis barrier restricting passage from blood into rete testis fluid but not into lymph. J Physiol. 1969, 200: 73-85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dubé E, Cyr DG: The blood-epididymis barrier and human male fertility. Adv Exp Med Biol. 2012, 763: 218-236.
PubMed
Google Scholar
Da-Silva N, Cortez-Retamozo V, Reinecker HC, Wildgruber M, Hill E, Brown D, Swirski F, Pitett M, Breton S: A dense network of dendritic cells populates the murine epididymis. Reproduction. 2011, 141 (5): 653-663. 10.1530/REP-10-0493.
Article
PubMed Central
CAS
PubMed
Google Scholar
Coombes JL, Powrie F: Dendritic cells in intestine immune regulation. Nat Rev Immunol. 2008, 8: 435-446. 10.1038/nri2335.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lewis KL, Reizis B: Dendritic cells: arbiters of immunity and immunological tolerance. Cold Spring Harb Perspect Biol. 2013, doi:10.1101/cshperspect.a007401
Google Scholar
Swiecki M, Colonna M: Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev. 2010, 234 (1): 142-162. 10.1111/j.0105-2896.2009.00881.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schmidt SV, Nino-Castro AC, Schultze JL: Regulatory dendritic cells: there is more than just immune activation. Front Immunol. 2012, 3: 274-284.
PubMed Central
PubMed
Google Scholar
Manicassamy S, Pulendran B: Dendritic cell control of tolerogenic responses. Immunol Rev. 2011, 241: 206-227. 10.1111/j.1600-065X.2011.01015.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harden JL, Egilmez NK: Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol Invest. 2012, 41 (6–7): 738-764.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang L, Baban B, Johnson BA, Mellor AL: Dendritic cells, indoleamine 2,3 dioxygenase and acquired immune privilege. Int Rev Immunol. 2010, 29 (2): 133-155. 10.3109/08830180903349669.
Article
PubMed Central
CAS
PubMed
Google Scholar
Matteoli G, Mazzini E, Iliev ID, Mileti E, Fallarino F, Puccetti P, Chieppa M, Rescigno M: Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut. 2010, 59 (5): 595-604. 10.1136/gut.2009.185108.
Article
CAS
PubMed
Google Scholar
Yoshida R, Nukiwa T, Watanabe Y, Fujiwara M, Hirata F, Hayaishi O: Regulation of indoleamine 2,3-dioxygenase activity in the small intestine and the epididymis of mice. Arch Biochem Biophys. 1980, 203 (1): 343-351. 10.1016/0003-9861(80)90185-X.
Article
CAS
PubMed
Google Scholar
Yamamoto S, Hayaishi O: Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J Biol Chem. 1967, 242: 5260-5266.
CAS
PubMed
Google Scholar
Mellor AL, Munn DH: IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004, 4 (10): 762-764. 10.1038/nri1457.
Article
CAS
PubMed
Google Scholar
Takikawa O, Tagawa Y, Iwakura Y, Yoshida R, Truscott RJ: Interferon-gamma-dependent/independent expression of indoleamine 2,3-dioxygenase. Studies with interferon-gamma-knockout mice. Adv Exp Med Biol. 1999, 467: 553-557. 10.1007/978-1-4615-4709-9_68.
Article
CAS
PubMed
Google Scholar
Jrad-Lamine A, Henry-Berger J, Gourbeyre P, Damon-Soubeyrand C, Lenoir A, Combaret L, Saez F, Kocer A, Tone S, Fuchs D, Zhu W, Oefner PJ, Munn DH, Mellor AL, Gharbi N, Cadet R, Aitken RJ, Drevet JR: Deficient tryptophan catabolism along the kynurenine pathway reveals that the epididymis is in a unique tolerogenic state. J Biol Chem. 2011, 286 (10): 8030-8042. 10.1074/jbc.M110.172114.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jrad-Lamine A, Henry-Berger J, Damon-Soubeyrand C, Saez F, Kocer A, Janny L, Pons-Rejraji H, Munn DH, Mellor AL, Gharbi N, Cadet R, Guiton R, Aitken RJ, Drevet JR: Indoleamine 2,3-dioxygenase 1 (IDO1) is involved in the control of mouse caput pididymis immune environment. PLoS One. 2013, 8 (6): e66494-10.1371/journal.pone.0066494. doi:10.1371/journal.pone.0066494
Article
PubMed Central
CAS
PubMed
Google Scholar
Britan A, Maffre V, Tone S, Drevet JR: Quantitative and spatial differences in the expression of tryptophan-metabolizing enzymes in mouse epididymis. Cell Tissue Res. 2006, 324: 301-310. 10.1007/s00441-005-0151-7.
Article
CAS
PubMed
Google Scholar
Baban B, Chandler P, McCool D, Marshall B, Munn DH, Mellor AL: Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol. 2004, 61: 67-77. 10.1016/j.jri.2003.11.003.
Article
CAS
PubMed
Google Scholar
Tone S, Britan A, Jrad A, Maffre V, Drevet JR: The mouse epididymis : a site of strong and constitutive expression of the tryptophan indoleamine 2,3-dioxygenase (IDO). Int Congr Ser. 2007, 1304: 233-240.
Article
CAS
Google Scholar
de-Luca A, Bozza S, Zelante T, Zagarella S, D’Angelo C, Perruccio K, Vacca C, Carvalho A, Cunha C, Aversa F, Romani L: Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cell Mol Immunol. 2010, 7 (6): 459-470. 10.1038/cmi.2010.43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fallarino F, Grohmann U: Using an ancient tool for igniting and propagating immune tolerance: IDO as an inducer and amplifier of regulatory T cell functions. Curr Med Chem. 2011, 18: 2215-2221. 10.2174/092986711795656027.
Article
CAS
PubMed
Google Scholar
Xu H, Zhang G-X, Ciric B, Rostani A: IDO: a double-edged sword for T(H)1/T(H)2 regulation. Immunol Lett. 2008, 121: 1-6. 10.1016/j.imlet.2008.08.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, Sobel RA, Selley ML, Steinman L: Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science. 2005, 310 (5749): 850-855. 10.1126/science.1117634.
Article
CAS
PubMed
Google Scholar
Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, Bianchi R, Velardi E, Perruccio K, Velardi A, Bronte V, Fioretti MC, Grohmann U: Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood. 2006, 107: 2846-2854. 10.1182/blood-2005-10-4077.
Article
CAS
PubMed
Google Scholar
Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, Nitsch R, Bechmann I: Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J. 2005, 19 (10): 1347-1349.
CAS
PubMed
Google Scholar
Cooper TG, Yeung CH, Jones R, Orgebin-Crist MC, Robaire B: Rebuttal of a role for the epididymis in sperm quality control by phagocytosis of defective sperm. J Cell Sci. 2002, 115: 5-7.
CAS
PubMed
Google Scholar
Balaji T, Aruna S, Ramanathan M, Srinivasan M, Menon VP: Suppression of constitutively expressed cyclooxygenase-2 in the epididymis of mice by nimesulide decreases sperm motility. J Basic Clin Physiol Pharmacol. 2009, 20 (4): 357-376.
Article
CAS
PubMed
Google Scholar
Johnston DS, Jelinsky SA, Bang HJ, DiCandeloro P, Wilson E, Kopf GS, Turner TT: The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biol Reprod. 2005, 73: 404-413. 10.1095/biolreprod.105.039719.
Article
CAS
PubMed
Google Scholar
Smith CJ, Zhang Y, Koboldt CM, Muhammad J, Zweifel BS, Shaffer A, Talley JJ, Masferrer JL, Seibert K, Isakson PC: Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci U S A. 1998, 95: 13313-13318. 10.1073/pnas.95.22.13313.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen M, Boilard E, Nigrovic PA, Clark P, Xu D, Fitzgerald GA, Audoly LP, Lee DM: Predominance of cylcooxygenase-1 over cyclooxygenase-2 in generation of proinflammatory prostaglandins in autoantibody-driven K/BxN serum transfer arthritis. Arthritis Rheum. 2008, 58: 1354-1365. 10.1002/art.23453.
Article
CAS
PubMed
Google Scholar
Blaho VA, Buczynski MW, Dennis EA, Brown CR: Cyclooxygenase-1 orchestrates germinal center formation and antibody class-switch via regulation of IL-17. J Immunol. 2009, 183 (9): 5644-5653. 10.4049/jimmunol.0901499.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wan YY, Flavell RA: TGF-β and regulatory T cell in immunity and autoimmunity. J Clin Immunol. 2008, 28 (6): 647-659. 10.1007/s10875-008-9251-y.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM: Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003, 198 (12): 1875-1886. 10.1084/jem.20030152.
Article
PubMed Central
CAS
PubMed
Google Scholar
Desai KV, Flanders KC, Kondaiah P: Expression of transforming growth factor-beta isoforms in the rat male sex accessory organs and epididymis. Cell Tissue Res. 1998, 294 (2): 271-277. 10.1007/s004410051177.
Article
CAS
PubMed
Google Scholar
Bomgardner D, Wehrenberg U, Rune GM: TGF-beta could be involved in paracrine actions in the epididymis of the marmoset monkey (Callithrix jacchus). J Androl. 1999, 20 (3): 375-383.
CAS
PubMed
Google Scholar
Desai KV, Kondaiah P: Androgen ablation results in differential regulation of transforming growth factor-beta isoforms in rat male accessory sex organs and epididymis. J Mol Endocrinol. 2000, 24 (2): 253-260. 10.1677/jme.0.0240253.
Article
CAS
PubMed
Google Scholar
Henderson NA, Cooke GM, Robaire B: Region-specific expression of androgen and growth factor pathway genes in the rat epididymis and the effects of dual 5alpha-reductase inhibition. J Endocrinol. 2006, 190 (3): 779-791. 10.1677/joe.1.06862.
Article
CAS
PubMed
Google Scholar
Zhao GQ, Liaw L, Hogan BL: Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development. 1998, 125 (6): 1103-1112.
CAS
PubMed
Google Scholar
Zhao GQ, Chen YX, Liu XM, Xu Z, Qi X: Mutation in Bmp7 exacerbates the phenotype of Bmp8a mutants in spermatogenesis and epididymis. Dev Biol. 2001, 240 (1): 212-222. 10.1006/dbio.2001.0448.
Article
CAS
PubMed
Google Scholar
Borish LC, Steinke JW: Cytokines and chemokines. J Allergy Clin Immunol. 2003, 111: 460-475. 10.1067/mai.2003.108.
Article
Google Scholar
Petitjean G, Chevalier MF, Tibaoui F, Didier C, Manea ME, Liovat AS, Campa P, Müller-Trutwin M, Girard PM, Meyer L, Barré-Sinoussi F, Scott-Algara D, Weiss L: Level of double negative T cells, which produce TGF-β and IL-10, predicts CD8 T-cell activation in primary HIV-1 infection. AIDS. 2012, 26 (2): 139-148. 10.1097/QAD.0b013e32834e1484.
Article
CAS
PubMed
Google Scholar
Veräjänkorva E, Pöllänen P, Hänninen A, Martikainen M, Sundström J, Antola H: IL-10 is highly expressed in the cryptorchid cryptepididymal epithelium: a probable mechanism preventing immune response against autoantigenic spermatozoa in the epididymal tubule. Int J Androl. 2002, 25: 129-133. 10.1046/j.1365-2605.2002.00336.x.
Article
PubMed
Google Scholar
Hall JA, Grainger JR, Spencer SP, Belkaid Y: The role of retinoic acid in tolerance and immunity. Immunity. 2011, 35 (1): 13-22. 10.1016/j.immuni.2011.07.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pappas RS, Newcomer ME, Ong DE: Endogenous retinoids in rat epididymal tissue and rat and human spermatozoa. Biol Reprod. 1993, 48: 235-247. 10.1095/biolreprod48.2.235.
Article
CAS
PubMed
Google Scholar
Ong DE, Newcomer ME, Lareyre JJ, Orgebin-Crist MC: Epididymal retinoic acid-binding protein. BBA. 2000, 1482: 209-217. 10.1016/S0167-4838(00)00156-4.
CAS
PubMed
Google Scholar
Costa SL, Boekelheide K, Vanderhyden BC, Seth R, McBurney MW: Male infertility caused by epididymal dysfunction in transgenic mice expressing a dominant negative mutation of retinoic acid receptor alpha 1. Biol Reprod. 1997, 56: 985-990. 10.1095/biolreprod56.4.985.
Article
CAS
PubMed
Google Scholar
Xu L, Kitani A, Strober W: Molecular mechanisms regulating TGF-beta-induced Foxp3 expression. Mucosal Immunol. 2010, 3: 230-238. 10.1038/mi.2010.7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nashan D, Malorny U, Sorg C, Cooper T, Nieschlag E: Immuno-competent cells in the murine epididymis. Int J Androl. 1989, 12: 85-94. 10.1111/j.1365-2605.1989.tb01289.x.
Article
CAS
PubMed
Google Scholar
D’Acquisto F, Crompton T: CD3 + CD4-CD8- (double negative) T cells: saviours or villains of the immune response?. Biochem Pharmacol. 2011, 82: 333-340. 10.1016/j.bcp.2011.05.019.
Article
PubMed
Google Scholar
Juvet SC, Zhang L: Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions. J Mol Cell Biol. 2012, 4 (1): 48-58. 10.1093/jmcb/mjr043.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ford McIntyre MS, Young KJ, Gao J, Joe B, Zhang L: Cutting edge: in vivo trogocytosis as a mechanism of double-negative regulatory T cell-mediated antigen-specific suppression. J Immunol. 2008, 181: 2271-2275.
Article
CAS
PubMed
Google Scholar
Chen W, Ford MS, Young KJ, Zhang L: The role and mechanisms of double negative regulatory T cells in the suppression of immune responses. Cell Mol Immunol. 2004, 5: 328-335.
Google Scholar
Wing K, Sakaguchi S: Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010, 11 (1): 7-13.
Article
CAS
PubMed
Google Scholar
Wheeler K, Tardif S, Rival C, Luu B, Bui E, Del-Rio R, Teucher C, Sparwasse T, Hardy D, Tung KS: Regulatory T cells control tolerogenic versus autoimmune response to sperm in vasectomy. Proc Natl Acad Sci U S A. 2011, 108 (18): 7511-7516. 10.1073/pnas.1017615108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Poglio S, De-Toni-Costes F, Arnaud E, Laharrague P, Espinosa E, Casteilla L, Cousin B: Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells. 2010, 28: 2065-2072. 10.1002/stem.523.
Article
CAS
PubMed
Google Scholar
Caspar-Bauguil S, Cousin B, Bour S, Casteilla L, Penicaud L, Carpéné C: Adipose tissue lymphocytes: types and roles. J Physiol Biochem. 2009, 65 (4): 423-436. 10.1007/BF03185938.
Article
CAS
PubMed
Google Scholar
Doherty DG, O’Farrelly C: Innate and adaptive lymphoid cells in the human liver. Immunol Rev. 2000, 174: 5-20. 10.1034/j.1600-0528.2002.017416.x.
Article
CAS
PubMed
Google Scholar
Kaufman SHE: γ/δ and other n T lymphocytes : what do they see and what do they do ?. Proc Natl Acad Sci U S A. 1996, 93: 2272-2279. 10.1073/pnas.93.6.2272.
Article
Google Scholar
González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M: Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009, 136 (3): 978-989. 10.1053/j.gastro.2008.11.041.
Article
PubMed
Google Scholar
Chu Y, Huddleston GG, Clancy AN, Harris RB, Bartness TJ: Epididymal fat is necessary for spermatogenesis, but not testosterone production or copulatory behavior. Endocrinology. 2010, 151 (12): 5669-5679. 10.1210/en.2010-0772.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kazeem AA: The assessment of epididymal lymphatics within the concept of immunologically privileged sites. Lymphology. 1983, 16: 168-171.
CAS
PubMed
Google Scholar