Ward WS, Coffey DS: DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991, 44: 569-574. 10.1095/biolreprod44.4.569.
Article
CAS
PubMed
Google Scholar
Sadeghi MR, Hodjat M, Lakpour N, Arefi S, Amirjannati N, Modarresi T, Jadda HH, Akhondi MM: Effects of sperm chromatin integrity on fertilization rate and embryo quality following intracytoplasmic sperm injection. Avicenna J Med Biotechnol. 2009, 1: 173-180.
PubMed Central
PubMed
Google Scholar
Oliva R, Oliva GI R: Protamines and male infertility. Hum Reprod Update. 2006, 12: 417-435. 10.1093/humupd/dml009.
Article
CAS
PubMed
Google Scholar
Sonnack V, Failing K, Bergmann M, Steger K: Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia. 2002, 34: 384-390. 10.1046/j.1439-0272.2002.00524.x.
Article
CAS
PubMed
Google Scholar
Bikond Nkoma G, Leduc F, Jaouad L, Boissonneault G: Electron microscopy analysis of histone acetylation and DNA strand breaks in mouse elongating spermatids using a dual labelling approach. Andrologia. 2010, 42: 322-325. 10.1111/j.1439-0272.2009.00999.x.
Article
CAS
PubMed
Google Scholar
Oliva R, Mezquita C: Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids. Nucleic Acids Res. 1982, 10: 8049-8059. 10.1093/nar/10.24.8049.
Article
PubMed Central
CAS
PubMed
Google Scholar
Christensen ME, Rattner JB, Dixon GH: Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trout. Nucleic Acids Res. 1984, 12: 4575-4592. 10.1093/nar/12.11.4575.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grimes SR, Henderson N: Hyperacetylation of histone H4 in rat testis spermatids. Exp Cell Res. 1984, 152: 91-97. 10.1016/0014-4827(84)90232-5.
Article
CAS
PubMed
Google Scholar
Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sèle B, Khochbin S, Rousseaux S: Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol. 2000, 79: 950-960. 10.1078/0171-9335-00123.
Article
CAS
PubMed
Google Scholar
Görisch SM, Wachsmuth M, Tóth KF, Lichter P, Rippe K: Histone acetylation increases chromatin accessibility. J Cell Sci. 2005, 118: 5825-5834. 10.1242/jcs.02689.
Article
PubMed
Google Scholar
Lee J-H, Choy ML, Ngo L, Foster SS, Marks PA: Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci U S A. 2010, 107: 14639-14644. 10.1073/pnas.1008522107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Namdar M, Perez G, Ngo L, Marks PA: Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci U S A. 2010, 107: 20003-20008. 10.1073/pnas.1013754107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marcon L, Boissonneault G: Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004, 70: 910-918.
Article
CAS
PubMed
Google Scholar
Laberge R-M, Boissonneault G: On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod. 2005, 73: 289-296. 10.1095/biolreprod.104.036939.
Article
CAS
PubMed
Google Scholar
Meyer-Ficca ML, Scherthan H, Bürkle A, Meyer RG: Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma. 2005, 114: 67-74. 10.1007/s00412-005-0344-6.
Article
CAS
PubMed
Google Scholar
Metzger MJ, McConnell-Smith A, Stoddard BL, Miller AD: Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res. 2011, 39: 926-935. 10.1093/nar/gkq826.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vamvakas S, Vock EH, Lutz WK: On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit Rev Toxicol. 1997, 27: 155-174. 10.3109/10408449709021617.
Article
CAS
PubMed
Google Scholar
Glaser RL, Jabs EW: Dear old dad. Sci Aging Knowledge Environ. 2004, 2004: 1-11.
Article
Google Scholar
Ellegren H: Characteristics, causes and evolutionary consequences of male-biased mutation. Proc Biol Sci. 2007, 274: 1-10. 10.1098/rspb.2006.3720.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson S, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong WSW, Sigurdsson G, Walters GB, Steinberg S, Helgason H, Thorleifsson G, Gudbjartsson DF, Helgason A, Magnusson OT: Thorsteinsdottir U, Stefansson K: Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012, 488: 471-475. 10.1038/nature11396.
Article
PubMed Central
CAS
PubMed
Google Scholar
Makova KD, Yang S, Chiaromonte F: Insertions and Deletions Are Male Biased Too : A Whole-Genome Analysis in Rodents. Genome Res. 2004, 14: 567-573. 10.1101/gr.1971104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kvikstad EM, Tyekucheva S, Chiaromonte F, Makova KD: A macaque’s-eye view of human insertions and deletions: differences in mechanisms. PLoS Comput Biol. 2007, 3: 1772-1782.
CAS
PubMed
Google Scholar
Ward WS, Partin AW, Coffey DS: DNA loop domains in mammalian spermatozoa. Chromosoma. 1989, 98: 153-159. 10.1007/BF00329678.
Article
CAS
PubMed
Google Scholar
Lavelle C: DNA torsional stress propagates through chromatin fiber and participates in transcriptional regulation. Nat Struct Mol Biol. 2008, 15: 123-125. 10.1038/nsmb0208-123.
Article
CAS
PubMed
Google Scholar
Benham CJ: Torsional stress and local denaturation in supercoiled DNA. Proc Natl Acad Sci U S A. 1979, 76: 3870-3874. 10.1073/pnas.76.8.3870.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roca J: Transcriptional inhibition by DNA torsional stress. Transcription. 2011, 2: 82-85. 10.4161/trns.2.2.14807.
Article
PubMed Central
PubMed
Google Scholar
Palecek E: Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol. 1991, 26: 151-226. 10.3109/10409239109081126.
Article
CAS
PubMed
Google Scholar
Travers A, Muskhelishvili G: DNA supercoiling - a global transcriptional regulator for enterobacterial growth?. Nat Rev Microbiol. 2005, 3: 157-169. 10.1038/nrmicro1088.
Article
CAS
PubMed
Google Scholar
Wang G, Christensen LA, Vasquez KM: Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci U S A. 2006, 103: 1-6.
Article
Google Scholar
Zhao J, Bacolla A, Wang G, Vasquez KM: Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci. 2010, 67: 43-62. 10.1007/s00018-009-0131-2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Champoux JJ: DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001, 70: 369-413. 10.1146/annurev.biochem.70.1.369.
Article
CAS
PubMed
Google Scholar
Cobb J, Miyaike M, Kikuchi A, Handel MA: Meiotic events at the centromeric heterochromatin: histone H3 phosphorylation, topoisomerase II alpha localization and chromosome condensation. Chromosoma. 1999, 108: 412-425. 10.1007/s004120050393.
Article
CAS
PubMed
Google Scholar
Leduc F, Maquennehan V, Nkoma GB, Boissonneault G: DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod. 2008, 78: 324-332. 10.1095/biolreprod.107.064162.
Article
CAS
PubMed
Google Scholar
Deweese JE, Osheroff N: The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res. 2009, 37: 738-748. 10.1093/nar/gkn937.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nitiss KC, Malik M, He X, White SW, Nitiss JL: Tyrosyl-DNA phosphodiesterase (Tdp1) participates in the repair of Top2-mediated DNA damage. Proc Natl Acad Sci U S A. 2006, 103: 8953-8958. 10.1073/pnas.0603455103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG: Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod. 2011, 84: 900-909. 10.1095/biolreprod.110.090035.
Article
PubMed Central
CAS
PubMed
Google Scholar
Keeney S: Spo11 and the formation of DNA double-strand breaks in meiosis. Genome Dyn Stab. 2008, 2: 81-123. 10.1007/7050_2007_026.
Article
PubMed Central
PubMed
Google Scholar
Neale MJ, Pan J, Keeney S: Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature. 2005, 436: 1053-1057. 10.1038/nature03872.
Article
PubMed Central
CAS
PubMed
Google Scholar
Griswold lab/Center for Reproductive Biology: Microarray expression from isolated germ cell types. [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2736]
Feinstein-Rotkopf Y, Arama E: Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis. 2009, 14: 980-995. 10.1007/s10495-009-0346-6.
Article
PubMed
Google Scholar
Celik-Ozenci C, Sahin Z, Ustunel I, Akkoyunlu G, Erdogru T, Korgun ET, Baykara M, Demir R: The Fas system may have a role in male reproduction. Fertil Steril. 2006, 85 (Suppl 1): 1168-1178.
Article
CAS
PubMed
Google Scholar
Toné S, Sugimoto K, Tanda K, Suda T, Uehira K, Kanouchi H, Samejima K, Minatogawa Y, Earnshaw WC: Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res. 2007, 313: 3635-3644. 10.1016/j.yexcr.2007.06.018.
Article
PubMed Central
PubMed
Google Scholar
Wen W, Zhu F, Zhang J, Keum Y-S, Zykova T, Yao K, Peng C, Zheng D, Cho Y-Y, Ma W, Bode AM, Dong Z: MST1 promotes apoptosis through phosphorylation of histone H2AX. J Biol Chem. 2010, 285: 39108-39116. 10.1074/jbc.M110.151753.
Article
PubMed Central
CAS
PubMed
Google Scholar
Widlak P, Garrard WT: Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem. 2005, 94: 1078-1087. 10.1002/jcb.20409.
Article
CAS
PubMed
Google Scholar
Cavalcanti MCO, Steilmann C, Failing K, Bergmann M, Kliesch S, Weidner W, Steger K: Apoptotic gene expression in potentially fertile and subfertile men. Mol Hum Reprod. 2011, 17: 415-420. 10.1093/molehr/gar011.
Article
CAS
PubMed
Google Scholar
Widlak P, Li P, Wang X, Garrard WT: Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem. 2000, 275: 8226-8232. 10.1074/jbc.275.11.8226.
Article
CAS
PubMed
Google Scholar
Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N: Dicer is required for haploid male germ cell differentiation in mice. PloS One. 2011, 6: e24821-10.1371/journal.pone.0024821.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harry BL, Nakagawa A, Xue D: Dicing up chromosomes: The unexpected role of Dicer in apoptosis. Cell Cycle. 2010, 9: 4772-4773. 10.4161/cc.9.24.14240.
Article
CAS
PubMed
Google Scholar
Arama E, Agapite J, Steller H: Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell. 2003, 4: 687-697. 10.1016/S1534-5807(03)00120-5.
Article
CAS
PubMed
Google Scholar
Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR: The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993, 75: 641-652. 10.1016/0092-8674(93)90485-9.
Article
CAS
PubMed
Google Scholar
Blanco-Rodríguez J, Martínez-García C: Apoptosis is physiologically restricted to a specialized cytoplasmic compartment in rat spermatids. Biol Reprod. 1999, 61: 1541-1547. 10.1095/biolreprod61.6.1541.
Article
PubMed
Google Scholar
Grégoire M-C, Massonneau J, Simard O, Gouraud A, Brazeau M-A, Arguin M, Leduc F, Boissonneault G: Male-driven de novo mutations in haploid germ cells. Mol Hum Reprod. 2013, Epub, in press
Google Scholar
Cocuzza M, Sikka SC, Athayde KS, Agarwal A: Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol. 2007, 33: 603-621. 10.1590/S1677-55382007000500002.
Article
PubMed
Google Scholar
Aitken RJ, De Iuliis GN: On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010, 16: 3-13. 10.1093/molehr/gap059.
Article
CAS
PubMed
Google Scholar
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG: Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res. 2011, 711: 193-201. 10.1016/j.mrfmmm.2010.12.016.
Article
CAS
PubMed
Google Scholar
Dedon PC: The chemical toxicology of 2-deoxyribose oxidation in DNA. Chem Research Toxicol. 2008, 21: 206-219. 10.1021/tx700283c.
Article
Google Scholar
De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, Nixon B, Aitken RJ: DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2’-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009, 81: 517-524. 10.1095/biolreprod.109.076836.
Article
CAS
PubMed
Google Scholar
Bánfi B, Molnár G, Maturana A, Steger K, Hegedûs B, Demaurex N, Krause KH: A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem. 2001, 276: 37594-37601. 10.1074/jbc.M103034200.
Article
PubMed
Google Scholar
Sabeur K, Ball BA: Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction. 2007, 134: 263-270. 10.1530/REP-06-0120.
Article
CAS
PubMed
Google Scholar
Steger K: Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl). 1999, 199: 471-487. 10.1007/s004290050245.
Article
CAS
Google Scholar
Kothari S, Thompson A, Agarwal A, Du Plessis SS: Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010, 48: 425-435.
CAS
PubMed
Google Scholar
Valavanidis A, Vlachogianni T, Fiotakis C: 8-hydroxy-2’ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Carcinog Ecotoxicol Rev. 2009, 27: 120-139. 10.1080/10590500902885684.
Article
CAS
Google Scholar
Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U: Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999, 4: 31-37. 10.1530/ror.0.0040031.
Article
CAS
PubMed
Google Scholar