Skip to main content
  • Article Original
  • Open access
  • Published:

Analyse du statut oxydatif spermatique chez des patients infertiles

Analysis of sperm oxidative status in infertile patients

Résumé

Introduction

L’infertilité masculine constitue un problème de santé publique. Plusieurs facteurs sont à l’origine de ce phénomène. Actuellement, le stress oxydatif est incriminé comme l’une des principales causes. Dans notre étude, nous avons cherché une corrélation entre les marqueurs du stress oxydatif et les caractéristiques spermatiques (numération, mobilité, morphologie).

Matériel et méthodes

Nous avons évalué le statut oxydatif spermatique de 129 sujets infertiles. Ces sujets sont caractérisés par une infertilité de durée variable. Ils ont été subdivisés en quatre groupes: des sujets normozoospermiques considérés comme témoins (n=34); des asthénozoospermiques (Asthéno, n=43); des oligozoospermiques (Oligo, n=22) et tératozoospermiques (Térato, n=30). Parmi les marqueurs du stress oxydatif, nous avons évalué, dans le plasma séminal, le zinc, le calcium, le magnésium et le sélénium par spectrométrie d’absorption atomique à flamme et à four. Le malondialdéhyde (MDA) est dosé par spectrofluorométrie.

Résultats

Les résultats de notre étude montrent que les concentrations séminales du zinc et du sélénium sont plus élevées chez les normozoospermiques que les concentrations de ces mêmes éléments chez les autres groupes. La concentration séminale en zinc est significativement corrélée avec la numération spermatique (r=0,49; p<0,001) et le MDA (r=−0,35; p<0,05). La mobilité des spermatozoïdes est corrélée avec le calcium (r=0,41; p<0,001) et le magnésium (r=0,31; p<0,05). La concentration du MDA est plus élevée chez les trois groupes de patients: oligospermiques (3,22±1,37 μg/ml), asthénospermiques (3,52±1,93 μg/ml) et tératospermiques (3,64±1,73 μg/ml) par rapport aux témoins (2,32±0,94 μg/ml). Une seule corrélation positive a été observée entre le MDA et la morphologie (r=0,19; p<0,05).

Conclusion

Notre étude confirme que le stress oxydatif joue un rôle important dans le processus des altérations des spermatozoïdes. Les radicaux libres peuvent, en effet, modifier la structure membranaire ainsi que celle de l’acide désoxyribonucléique. Ces altérations conduisent aussi à une augmentation du pourcentage de spermatozoïdes de formes anormales.

Abstract

Introduction

Male infertility constitutes public health problems. Several factors are at the origin of this phenomenon. Currently, the oxidative stress is accused to be one of the leading causes. In our study, we sought a correlation between the markers of the oxidative stress and the sperm characteristics (morphology).

Material and methods

We evaluated the antioxidant status in the seminal plasma of 129 infertile men. Patients were characterized by infertility of variable duration. They were divided into four groups: normozoospermics who were considered as controls (n=34), asthenozoospermics (Astheno; n=43), oligozoospermics (Oligo; n=22) and teratozoospermics (Terato; n=30). Among the oxidative stress markers, we evaluated, in seminal plasma, zinc, calcium, magnesium and selenium by spectrophotometry of atomic absorption to flame and furnace. The malondialdehyde (MDA) is proportioned by spectrofluorometry.

Results

Our results show that the seminal concentrations of zinc and selenium are higher in the control group than the concentrations of these same elements in the three other groups. The seminal zinc concentration was significantly correlated with the sperm count (r=0.49; p < 0.001) and MDA (r=- 0.35; p<0.05). Sperm motility was correlated with calcium (r=0.41; p<0.001) and magnesium (r=0.31; p<0.05). The MDA concentration is higher in the three groups of patients: oligozoospermics (3.22±1.37 μg/ml), asthenozoospermics (3.52±1.93 μg/ml) and teratozoospermics (3.64±1.73 μg/ml) compared with controls (2.32±0.94 μg/ml). A single positive correlation was observed between the MDA and morphology (r=0.19; p<0.05).

Conclusion

Our study confirms that the oxidative stress plays an important role in the process of deteriorations of the spermatozoa. The free radicals can, indeed, modify the membrane structure as well as the membrane structure of the deoxyribonucleic acid. These deteriorations also lead to an increase in the percentage of sperm of abnormal forms.

Références

  1. Marzec-Wróblewska U, Kaminski P, Lakota P (2012). Influence of Chemical Elements on Mammalian Spermatozoa. Folia Biologica (Praha) 58:7–15

    Google Scholar 

  2. Hall L, Willimas K, Perry AC, et al (1998). The majority of human glutathione peroxidase type 5 (GPX5) transcripts are incorrectly spliced: implications for the role of GPX5 in the male reproductive tract. Biochem J 333:5–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(suppl 3) 469–74.

    Article  PubMed  CAS  Google Scholar 

  4. Murawski M, Saczko J, Marcinkowsha A, et al (2007). Evaluation of superoxide dismutase activity and its impact on semen quality parameters of infertile men. Folia Histochem Cytobiol 45(suppl 1):123–6

    CAS  Google Scholar 

  5. Colagar AH, Marzony ET, Chaichi MJ (2009) Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res 29:82–8

    Article  PubMed  CAS  Google Scholar 

  6. Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–43

    Article  PubMed  Google Scholar 

  7. Tavilani H, Doosti M, Saeidi H (2005) Malondialdehyde levels in sperm and seminal plasma of asthenozoospermic and its relationship with semen parameters. Clin Chim Acta 356:199–203

    Article  PubMed  CAS  Google Scholar 

  8. World Health Organization (1999) WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction. 4th edition. Cambridge, UK: Published on behalf of the World Health Organization by Cambridge University Press 1–86

    Google Scholar 

  9. David G., Bisson JP, Czyglik. F, et al (1975) Anomalies morphologiques du spermatozoïde humain: 1) Proposition pour un système de classification. J Gynecol Obstet Biol Reprod 4:17–36

    Google Scholar 

  10. Sorensen MB, Bergdahl IA, Hjollund NH, et al (1999) Zinc, magnesium and calcium in human seminal fluid: relations to other semen parameters and fertility. Mol Hum Reprod 5:331–7

    Article  PubMed  CAS  Google Scholar 

  11. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212–6

    Article  PubMed  CAS  Google Scholar 

  12. Henkel R, Bitter J, Weber R, et al (1999) Revelance of zinc in human sperm flagella and its relation to mobility. Fertil Steril 71:1138–43

    Article  PubMed  CAS  Google Scholar 

  13. Chia SE, Ong CN, Chua LH, et al (2000) Comparison of zinc concentration in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J Androl 21:45–6

    Google Scholar 

  14. Prasad AS (1991) Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 53:403–12

    PubMed  CAS  Google Scholar 

  15. Endre L, Beck F, Prasad A (1997) The role of zinc in human health. Exp Cell Res 233:216–24

    Article  Google Scholar 

  16. Lewis-Jones DI, Aird IA, Biljan MM, Kingsland CR (1996) Effects of sperm activity on zinc and fructose concentrations in seminal plasma. Hum Reprod 11:2465–7

    Article  PubMed  CAS  Google Scholar 

  17. Kravets FG, Lee J, Singh B, et al (2000) Prostasomes: current concepts. Prostate 43:169–74

    Article  PubMed  CAS  Google Scholar 

  18. Yeung CH, Cooper TG, Geyter MD, et al (1998) Studies on the origin of redox enzymes in seminal plasma and their relationship with results of in vitro fertilization. Mol Hum Reprod 4(Suppl 9):835–9

    Article  PubMed  CAS  Google Scholar 

  19. Aiken RJ (1997). Molecular mechanism regulating human sperm function. Mol Hum Reprod 3(Suppl 3):169–73

    Article  Google Scholar 

  20. Zhao RP, Xiong CL (2005) Zinc content analysis in serum, seminal plasma and spermatozoa of asthenozoospermic and oligo-asthenozoospermic patients. Zhonghua Nan Ke Xue 11(Suppl 9):680–2

    PubMed  CAS  Google Scholar 

  21. Vivaqua A, Siciliano L, Sabato M, et al (2004) Prostasomes as zinc ligands in human seminal plasma. Int J Androl 27:27–31

    Article  Google Scholar 

  22. Sørensen MB, Bergdahl IA, Hjøllund NH, et al (1999) Zinc, magnesium and calcium in human seminal fluid: relations to other semen parameters and fertility. Mol Hum Reprod 5:331–7

    Article  PubMed  Google Scholar 

  23. Wayne CH, Turek PJ (2001) Effects of dietary selenium on sperm mobility in healthy men. J Androl 22:764–72

    Google Scholar 

  24. Scott MP, Dixon H (1998) The effect of oral selenium supplementation on human sperm motility. Br J Urol 82:76–80

    Article  PubMed  CAS  Google Scholar 

  25. Xu DX, Shen HM, Zhu O.X, et al (2003) The associations among quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res 534:155–63

    Article  PubMed  CAS  Google Scholar 

  26. Frits MF, Barend MG (2000) Dynamic of the mammalian sperm plasma membrane in the process of the fertilization. Biochim Biophys Acta 1469:197–235

    Article  Google Scholar 

  27. Wong WY, Gert F, Pascal MW, et al (2001) The impact of calcium, magnesium, zinc and cooper in blood and seminal plasma on semen parameters in men. Reprod Toxicol 15:131–6

    Article  PubMed  CAS  Google Scholar 

  28. Storey BT (1997) Biochemistry of the induction and prevention of lipo-peroxidative mechanisms damage in human spermatozoa. Mol Hum Reprod 3:203–13

    Article  PubMed  CAS  Google Scholar 

  29. Agarwal A, Allamaneni SS (2011) Free radicals and male reproduction. J Indian Med Assoc 109:184–7

    PubMed  Google Scholar 

  30. Ben Abdallah F, Dammak I, Attia H, et al (2009). Lipid peroxidation and antioxidant enzyme activities in infertile men: correlation with semen parameter. J Clin Lab Anal 23:99–104

    Article  PubMed  CAS  Google Scholar 

  31. Suleiman SA, Ali ME, Zaki ZM, et al (1996) Lipid peroxidation and human sperm motility: protective role of vitamin. J Androl 17:530–7

    PubMed  CAS  Google Scholar 

  32. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–40

    Article  PubMed  CAS  Google Scholar 

  33. Misro MM, Choudhury L, Upreti K, et al (2004) Use of hydrogen peroxide to assess the sperm susceptibility to oxidative stress in subjects presenting a normal semen profile. Int J Androl 27:82–7

    Article  PubMed  CAS  Google Scholar 

  34. Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122:497–506

    Article  PubMed  CAS  Google Scholar 

  35. Dandekar SP, Nadkarni GD, Kulkarni VS, Punekar S (2002) Lipid peroxidation and antioxidant enzymes in mal infertility. J Postgrad Med 48:186–9

    PubMed  CAS  Google Scholar 

  36. Lenzi A, Picardo M, Gandini L, Dondero F (1996) Lipids of the sperm plasma membrane: from polyunsaturated as markers of sperm function to possible scavenger therapy. Hum Reprod Update 2:246–56

    Article  PubMed  CAS  Google Scholar 

  37. Sharma RK, Agarwal A (1996) Role of reactive oxygene species in male infertility. Urology 48:835–50

    Article  PubMed  CAS  Google Scholar 

  38. Pasqualotto FF, Sharma RK, Nelson DR, et al (2000) Relationship between oxidative, stress, semen characteristics, and clinical diagnosis in men undergoing fertility investigation. Fertil Steril 73:459–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ben Ali.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Ben Ali, H., Atig, F., Mehri, S. et al. Analyse du statut oxydatif spermatique chez des patients infertiles. Basic Clin. Androl. 22, 233–240 (2012). https://doi.org/10.1007/s12610-012-0198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12610-012-0198-8

Mots clés

Keywords