Skip to main content

Advertisement

Analyse du statut oxydatif spermatique chez des patients infertiles

Analysis of sperm oxidative status in infertile patients

Résumé

Introduction

L’infertilité masculine constitue un problème de santé publique. Plusieurs facteurs sont à l’origine de ce phénomène. Actuellement, le stress oxydatif est incriminé comme l’une des principales causes. Dans notre étude, nous avons cherché une corrélation entre les marqueurs du stress oxydatif et les caractéristiques spermatiques (numération, mobilité, morphologie).

Matériel et méthodes

Nous avons évalué le statut oxydatif spermatique de 129 sujets infertiles. Ces sujets sont caractérisés par une infertilité de durée variable. Ils ont été subdivisés en quatre groupes: des sujets normozoospermiques considérés comme témoins (n=34); des asthénozoospermiques (Asthéno, n=43); des oligozoospermiques (Oligo, n=22) et tératozoospermiques (Térato, n=30). Parmi les marqueurs du stress oxydatif, nous avons évalué, dans le plasma séminal, le zinc, le calcium, le magnésium et le sélénium par spectrométrie d’absorption atomique à flamme et à four. Le malondialdéhyde (MDA) est dosé par spectrofluorométrie.

Résultats

Les résultats de notre étude montrent que les concentrations séminales du zinc et du sélénium sont plus élevées chez les normozoospermiques que les concentrations de ces mêmes éléments chez les autres groupes. La concentration séminale en zinc est significativement corrélée avec la numération spermatique (r=0,49; p<0,001) et le MDA (r=−0,35; p<0,05). La mobilité des spermatozoïdes est corrélée avec le calcium (r=0,41; p<0,001) et le magnésium (r=0,31; p<0,05). La concentration du MDA est plus élevée chez les trois groupes de patients: oligospermiques (3,22±1,37 μg/ml), asthénospermiques (3,52±1,93 μg/ml) et tératospermiques (3,64±1,73 μg/ml) par rapport aux témoins (2,32±0,94 μg/ml). Une seule corrélation positive a été observée entre le MDA et la morphologie (r=0,19; p<0,05).

Conclusion

Notre étude confirme que le stress oxydatif joue un rôle important dans le processus des altérations des spermatozoïdes. Les radicaux libres peuvent, en effet, modifier la structure membranaire ainsi que celle de l’acide désoxyribonucléique. Ces altérations conduisent aussi à une augmentation du pourcentage de spermatozoïdes de formes anormales.

Abstract

Introduction

Male infertility constitutes public health problems. Several factors are at the origin of this phenomenon. Currently, the oxidative stress is accused to be one of the leading causes. In our study, we sought a correlation between the markers of the oxidative stress and the sperm characteristics (morphology).

Material and methods

We evaluated the antioxidant status in the seminal plasma of 129 infertile men. Patients were characterized by infertility of variable duration. They were divided into four groups: normozoospermics who were considered as controls (n=34), asthenozoospermics (Astheno; n=43), oligozoospermics (Oligo; n=22) and teratozoospermics (Terato; n=30). Among the oxidative stress markers, we evaluated, in seminal plasma, zinc, calcium, magnesium and selenium by spectrophotometry of atomic absorption to flame and furnace. The malondialdehyde (MDA) is proportioned by spectrofluorometry.

Results

Our results show that the seminal concentrations of zinc and selenium are higher in the control group than the concentrations of these same elements in the three other groups. The seminal zinc concentration was significantly correlated with the sperm count (r=0.49; p < 0.001) and MDA (r=- 0.35; p<0.05). Sperm motility was correlated with calcium (r=0.41; p<0.001) and magnesium (r=0.31; p<0.05). The MDA concentration is higher in the three groups of patients: oligozoospermics (3.22±1.37 μg/ml), asthenozoospermics (3.52±1.93 μg/ml) and teratozoospermics (3.64±1.73 μg/ml) compared with controls (2.32±0.94 μg/ml). A single positive correlation was observed between the MDA and morphology (r=0.19; p<0.05).

Conclusion

Our study confirms that the oxidative stress plays an important role in the process of deteriorations of the spermatozoa. The free radicals can, indeed, modify the membrane structure as well as the membrane structure of the deoxyribonucleic acid. These deteriorations also lead to an increase in the percentage of sperm of abnormal forms.

Références

  1. 1.

    Marzec-Wróblewska U, Kaminski P, Lakota P (2012). Influence of Chemical Elements on Mammalian Spermatozoa. Folia Biologica (Praha) 58:7–15

  2. 2.

    Hall L, Willimas K, Perry AC, et al (1998). The majority of human glutathione peroxidase type 5 (GPX5) transcripts are incorrectly spliced: implications for the role of GPX5 in the male reproductive tract. Biochem J 333:5–9

  3. 3.

    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(suppl 3) 469–74.

  4. 4.

    Murawski M, Saczko J, Marcinkowsha A, et al (2007). Evaluation of superoxide dismutase activity and its impact on semen quality parameters of infertile men. Folia Histochem Cytobiol 45(suppl 1):123–6

  5. 5.

    Colagar AH, Marzony ET, Chaichi MJ (2009) Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res 29:82–8

  6. 6.

    Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–43

  7. 7.

    Tavilani H, Doosti M, Saeidi H (2005) Malondialdehyde levels in sperm and seminal plasma of asthenozoospermic and its relationship with semen parameters. Clin Chim Acta 356:199–203

  8. 8.

    World Health Organization (1999) WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction. 4th edition. Cambridge, UK: Published on behalf of the World Health Organization by Cambridge University Press 1–86

  9. 9.

    David G., Bisson JP, Czyglik. F, et al (1975) Anomalies morphologiques du spermatozoïde humain: 1) Proposition pour un système de classification. J Gynecol Obstet Biol Reprod 4:17–36

  10. 10.

    Sorensen MB, Bergdahl IA, Hjollund NH, et al (1999) Zinc, magnesium and calcium in human seminal fluid: relations to other semen parameters and fertility. Mol Hum Reprod 5:331–7

  11. 11.

    Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212–6

  12. 12.

    Henkel R, Bitter J, Weber R, et al (1999) Revelance of zinc in human sperm flagella and its relation to mobility. Fertil Steril 71:1138–43

  13. 13.

    Chia SE, Ong CN, Chua LH, et al (2000) Comparison of zinc concentration in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J Androl 21:45–6

  14. 14.

    Prasad AS (1991) Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 53:403–12

  15. 15.

    Endre L, Beck F, Prasad A (1997) The role of zinc in human health. Exp Cell Res 233:216–24

  16. 16.

    Lewis-Jones DI, Aird IA, Biljan MM, Kingsland CR (1996) Effects of sperm activity on zinc and fructose concentrations in seminal plasma. Hum Reprod 11:2465–7

  17. 17.

    Kravets FG, Lee J, Singh B, et al (2000) Prostasomes: current concepts. Prostate 43:169–74

  18. 18.

    Yeung CH, Cooper TG, Geyter MD, et al (1998) Studies on the origin of redox enzymes in seminal plasma and their relationship with results of in vitro fertilization. Mol Hum Reprod 4(Suppl 9):835–9

  19. 19.

    Aiken RJ (1997). Molecular mechanism regulating human sperm function. Mol Hum Reprod 3(Suppl 3):169–73

  20. 20.

    Zhao RP, Xiong CL (2005) Zinc content analysis in serum, seminal plasma and spermatozoa of asthenozoospermic and oligo-asthenozoospermic patients. Zhonghua Nan Ke Xue 11(Suppl 9):680–2

  21. 21.

    Vivaqua A, Siciliano L, Sabato M, et al (2004) Prostasomes as zinc ligands in human seminal plasma. Int J Androl 27:27–31

  22. 22.

    Sørensen MB, Bergdahl IA, Hjøllund NH, et al (1999) Zinc, magnesium and calcium in human seminal fluid: relations to other semen parameters and fertility. Mol Hum Reprod 5:331–7

  23. 23.

    Wayne CH, Turek PJ (2001) Effects of dietary selenium on sperm mobility in healthy men. J Androl 22:764–72

  24. 24.

    Scott MP, Dixon H (1998) The effect of oral selenium supplementation on human sperm motility. Br J Urol 82:76–80

  25. 25.

    Xu DX, Shen HM, Zhu O.X, et al (2003) The associations among quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res 534:155–63

  26. 26.

    Frits MF, Barend MG (2000) Dynamic of the mammalian sperm plasma membrane in the process of the fertilization. Biochim Biophys Acta 1469:197–235

  27. 27.

    Wong WY, Gert F, Pascal MW, et al (2001) The impact of calcium, magnesium, zinc and cooper in blood and seminal plasma on semen parameters in men. Reprod Toxicol 15:131–6

  28. 28.

    Storey BT (1997) Biochemistry of the induction and prevention of lipo-peroxidative mechanisms damage in human spermatozoa. Mol Hum Reprod 3:203–13

  29. 29.

    Agarwal A, Allamaneni SS (2011) Free radicals and male reproduction. J Indian Med Assoc 109:184–7

  30. 30.

    Ben Abdallah F, Dammak I, Attia H, et al (2009). Lipid peroxidation and antioxidant enzyme activities in infertile men: correlation with semen parameter. J Clin Lab Anal 23:99–104

  31. 31.

    Suleiman SA, Ali ME, Zaki ZM, et al (1996) Lipid peroxidation and human sperm motility: protective role of vitamin. J Androl 17:530–7

  32. 32.

    Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–40

  33. 33.

    Misro MM, Choudhury L, Upreti K, et al (2004) Use of hydrogen peroxide to assess the sperm susceptibility to oxidative stress in subjects presenting a normal semen profile. Int J Androl 27:82–7

  34. 34.

    Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122:497–506

  35. 35.

    Dandekar SP, Nadkarni GD, Kulkarni VS, Punekar S (2002) Lipid peroxidation and antioxidant enzymes in mal infertility. J Postgrad Med 48:186–9

  36. 36.

    Lenzi A, Picardo M, Gandini L, Dondero F (1996) Lipids of the sperm plasma membrane: from polyunsaturated as markers of sperm function to possible scavenger therapy. Hum Reprod Update 2:246–56

  37. 37.

    Sharma RK, Agarwal A (1996) Role of reactive oxygene species in male infertility. Urology 48:835–50

  38. 38.

    Pasqualotto FF, Sharma RK, Nelson DR, et al (2000) Relationship between oxidative, stress, semen characteristics, and clinical diagnosis in men undergoing fertility investigation. Fertil Steril 73:459–64

Download references

Author information

Correspondence to H. Ben Ali.

Rights and permissions

Reprints and Permissions

About this article

Mots clés

  • Infertilité
  • Stress oxydatif
  • Éléments trace

Keywords

  • Infertility
  • Oxidative stress
  • Trace elements