Skip to main content
  • Article Original
  • Open access
  • Published:

Journée scientifique de la SALF : le testicule en devenir

A SALF scientific day: the testicle and beyond

Références

  1. Matson CK, Murphy MW, Sarver AL, et al (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476:101–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934

    Article  PubMed  CAS  Google Scholar 

  3. Chaboissier MC, Kobayashi A, Vidal VI, et al (2004) Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131:1891–1901

    Article  PubMed  CAS  Google Scholar 

  4. Lavery R, Lardenois A, Ranc-Jianmotamedi F, et al (2011) XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Dev Biol 354:111–122

    Article  PubMed  CAS  Google Scholar 

  5. Yao HH, Whoriskey W, Capel B (2002) Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16:1433–1440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Parma P, Radi O, Vidal V, et al (2006) R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309

    Article  PubMed  CAS  Google Scholar 

  7. Chassot AA, Ranc F, Gregoire EP, et al (2008) Activation of betacatenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet 17:1264–1277

    Article  PubMed  CAS  Google Scholar 

Références

  1. Rouiller-Fabre V, Muczynski V, Lambrot R, et al (2009) Ontogenesis of testicular function in humans. Folia Histochem Cytobiol 47:S19–S24

    PubMed  Google Scholar 

  2. Lambrot R, Coffigny H, Pairault C, et al (2006) Use of organ culture to study the human fetal testis development: effect of retinoic acid. J Clin Endocrinol Metab 91:2696–2703

    Article  PubMed  CAS  Google Scholar 

  3. Habert R, Muczynski V, Lehraiki A, et al (2009) Adverse effects of endocrine disruptors on the foetal testis development: focus on the phthalates. Folia Histochem Cytobiol 47:S67–S74

    PubMed  CAS  Google Scholar 

  4. Lambrot R, Muczynski V, Lecureuil C, et al (2009) Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. Environ Health Perspect 117:32–37

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Angenard G, Muczynski V, Coffigny H, et al (2010) Cadmium increases human fetal germ cell apoptosis. Environ Health Perspect 118:331–337

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Angenard G, Muczynski V, Coffigny H, et al (2010) In vitro effects of uranium on human fetal germ cells. Reprod Toxicol 31:470–476

    Article  Google Scholar 

Références

  1. Sharpe M, McKinnel C, Kilvin C, Fisher S (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784

    Article  PubMed  CAS  Google Scholar 

  2. Courant F, Aksglaede L, Antignac JP, et al (2010) Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab 95:82–92

    Article  PubMed  CAS  Google Scholar 

  3. Nistal M, Paniagua R (1984) Occurrence of primary spermatocytes in the infant and child testis. Andrologia 16:532–536

    Article  PubMed  CAS  Google Scholar 

  4. Muller J, Skakkebaek NE (1983) Quantification of germ cells and seminiferous tubules by stereological examination of testicles from 50 boys who suffered from sudden death. Int J Androl 6:143–156

    Article  PubMed  CAS  Google Scholar 

  5. Rajpert-de-Meyts E, Jorgensen N, Graem N, et al (1999) Expression of anti-mullerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J Clin Endocrinol Metab 84:836–844

    Google Scholar 

  6. Rey R, Lordereau-Richard I, Carel JC, et al (2009) Antimullerian hormone and testosterone serum levels are inversely during normal and precocious pubertal development. J Clin Endocrinol Metab 77:1220–1226

    Google Scholar 

Références

  1. Fumel B, Sow A, Fouchecourt S, Guillou F (2009) Une nouvelle fonction pour la transferrine exprimée par le testicule. Andrologie 19:81–89

    Google Scholar 

  2. Yefimova MG, Sow A, Fontaine I, et al (2008) Dimeric transferrin inhibits phagocytosis of residual bodies by testicular rat Sertoli cells. Biol Reprod 78:697–704

    Article  PubMed  CAS  Google Scholar 

Références

  1. Consortium on the management of disorders of sex development (2006) Clinical Guidelines for the Management of Disorders of Sex Development in Childhood. Intersex Society of North America

  2. Abbas N, McElreavey K, Leconiat M, et al (1993) Familial case of 46,XX male and 46,XX true hermaphrodite associated with a paternal-derived SRY-bearing X chromosome. C R Acad Sci III 316:375–383

    PubMed  CAS  Google Scholar 

  3. Sinclair AH, Berta P, Palmer MS, et al (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244

    Article  PubMed  CAS  Google Scholar 

  4. Berta P, Boss Hawkins J, Andrew H, et al (1990) Genetic evidence equating SRY and the testis-determining factor. Nature 348:448–450

    Article  PubMed  CAS  Google Scholar 

  5. McElreavey K, Vilain E, Abbas N, et al (1993) A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc Natl Acad Sci U S A 90:3368–3372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Sutton E, Hughes J, White S, et al (2011) Identification of Sox3 as an XX male sex reversal gene in mice and humans. J Clin Invest 121:328–341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Matson CK, Zarkower D (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476:101–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Hersmus R, Kalfa N, de Leeuw B, et al (2008) Foxl2 and Sox9 as parameters of female and male gonadal differentiation in patients with various forms of disorders of sex development (DSD). J Pathol 215:31–38

    Article  PubMed  CAS  Google Scholar 

References

  1. Rowley MJ, Heller CG (1971) Quantitation of the cells of the seminiferous epithelium of the human testis employing the Sertoli cell as a constant. Z Zellforsch Mikrosk Anat 115:461–472

    Article  PubMed  CAS  Google Scholar 

  2. Tegelenbosch RA, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290:193–200

    Article  PubMed  CAS  Google Scholar 

  3. van Alphen MM, van de Kant HJ, de Rooij DG (1988) Depletion of the spermatogonia from the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res 113:473–486

    Article  PubMed  Google Scholar 

  4. Kluin PM, Kramer MF, de Rooij DG (1983) Testicular development in Macaca irus after birth. Int J Androl 6:25–43

    Article  PubMed  CAS  Google Scholar 

  5. van Alphen MM, van de Kant HJ, de Rooij DG (1988) Repopulation of the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res 113:487–500

    Article  PubMed  Google Scholar 

Références

  1. Hack WWM, Meijer RW, Voort-Doedens LM, et al (2003) Natural course of acquired undescended testis in boys. Br J Surg 90:728–731

    Article  PubMed  CAS  Google Scholar 

  2. Martin JDC (2006) Further evidence for acquired undescended testicle in the UK and its incompatibility with current recommendations in the Hall Report. J Pediatr Urol 2:292–297

    Article  Google Scholar 

  3. Clarnette TD, Rowe D, Hasthorpe S, Hutson JM (1997) Incomplete disappearance of the processus vaginalis as a cause of ascending testis. J Urol 157:1889–1891

    Article  PubMed  CAS  Google Scholar 

  4. Clarnette TD, Hutson JM (1997) Is the ascending testis actually “stationary”? Normal elongation of the spermatic cord is prevented by a fibrous remnant of the processus vaginalis. Pediatr Surg Int 12:155–157

    Article  CAS  Google Scholar 

  5. Mayr JM, Rune GM, Holas A, et al (1995) Ascent of the testis in children. Eur J Pediatr 154:893–895

    Article  PubMed  CAS  Google Scholar 

Références

  1. Ravasse P (2009) Le testicule de l’enfant. Sauramps Médical, Paris

    Google Scholar 

  2. Robin G, Boitrelle F, Marcelli F, et al (2010) Cryptorchidism: from physiopathology to infertility. Gynecol Obstet Fertil 3810:588–599

    Article  Google Scholar 

  3. Thonneau PF, Gandia P, Mieusset R (2003) Cryptorchidism: incidence, risk factors, and potential role of environment; an update. J Androl 24:155–162

    Article  PubMed  Google Scholar 

  4. Hadziselimovic F, Herzog B (2001) The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet 358:1156–1157

    Article  PubMed  CAS  Google Scholar 

  5. Rigot JM (2009) Secretory azoospermia or non-obstructive azoospermia? Folia Histochem Cytobiol 47:S51–S53

    PubMed  CAS  Google Scholar 

  6. Marcelli F, Robin G, Lefebvre-Khalil V, et al (2008) Results of surgical testicular sperm extractions (TESE) in a population of azoospermic patients with a history of cryptorchidism based on a 10-year experience of 142 patients. Prog Urol 2008 1810:657–662

    Article  Google Scholar 

Références

  1. Sultan C, Jeandel C, Paris F, et al (2003) Conséquences endocriniennes de la pollution environnementale chez l’enfant. In: Mises au point cliniques d’endocrinologie, nutrition et métabolisme. Les Éditions de Médecine Pratique, Paris, pp 109–124

    Google Scholar 

  2. Sultan C, Terouanne B, Balaguer P, et al (2001) Environmental xenoestrogens, antiandrogens and disorders of male sexual differentiation. Mol Cel Endo 178:99–105

    Article  CAS  Google Scholar 

  3. Kalfa N, Philibert P, Baskin LS, Sultan C (2011) Hypospadias: interactions between environment and genetics. Mol Cel Endo 335(2):89–95

    Article  CAS  Google Scholar 

  4. Sultan C, Paris F, Terouanne B, et al (2001) Disorders linked to insufficient androgen action in male children. Hum Reprod 7:314–322

    Article  CAS  Google Scholar 

  5. Sultan C, Gaspari L, Kalfa N, Paris F (2011) Perturbateurs endocriniens environnementaux et maladies endocriniennes de l’enfant. Med Long 3:108–110

    Google Scholar 

  6. Gaspari L, Paris F, Jeandel C, et al (2011) Prenatal environmental risk factors for genital malformations in a population of 1,442 French male newborns: a nested case-control study. Hum Reprod 26:3155–3162

    Article  PubMed  Google Scholar 

  7. Paris F, Jeandel CL, Servant N, Sultan CH (2006) Increased serum estrogenic bioactivity in three male newborns with ambiguous genitalia: a potential consequence of prenatal exposure to environmental endocrine disruptors. Environ Res 100:39–43

    Article  PubMed  CAS  Google Scholar 

  8. Gaspari L, Paris F, Philibert P, et al (2011) “Idiopathic” partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals? Eur J Endocrinol 4:579–587

    Article  Google Scholar 

  9. Ribeiro Sampaio D, Gaspari L, Paris F, et al (2011) High prevalence of micropenis in 2,710 male newborns from an intensive-use pesticide area of Northeastern Brazil (en correction)

Bibliographie

  1. Rolland AD, Jégou B, Pineau C (2008) Testicular development and spermatogenesis: harvesting the postgenomics bounty. Adv Exp Med Biol 636:16–41

    Article  PubMed  CAS  Google Scholar 

  2. Calvel P, Rolland AD, Jégou B, Pineau C (2010) Testicular postgenomics: targeting the regulation of spermatogenesis. Phil Trans R Soc B 365:1481–1500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Journée scientifique de la SALF : le testicule en devenir. Basic Clin. Androl. 21, 294–301 (2011). https://doi.org/10.1007/s12610-011-0154-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12610-011-0154-z