Skip to main content

Testostérone et contrôle central de l’érection

Testosterone in the central control of penile erection

Résumé

La testostérone orchestre l’organisation périnatale et l’activation adulte des structures nerveuses cérébrales et spinales impliquées dans l’expression du comportement sexuel mâle. Cette revue décrit brièvement les différents effets de la testostérone dans la régulation de la motivation sexuelle et de l’érection, et les modèles génétiques générés, jusqu’à présent, dans le but d’élucider ses mécanismes d’action centraux.

Abstract

Testosterone orchestrates the perinatal organization and activation of cerebral and spinal neuronal structures involved in the expression of male sexual behaviour in adults. The present review briefly describes testosterone effects in the regulation of sexual motivation and erection, as well as the genetic models developed to date in order to unravel its central mechanisms of action.

Références

  1. Hull EM, Rodrıguez-Manzo (2009) Male sexual behavior. In: Hormones, Brain and Behavior. Academic Press, San Diego, pp 5–65

    Google Scholar 

  2. Andersson KE, Wagner G (1995) Physiology of penile erection. Physiol Rev 75:191–236

    PubMed  Google Scholar 

  3. Andersson KE (2001) Pharmacology of penile erection. Pharmacol Rev 53:417–450

    PubMed  Google Scholar 

  4. Albersen M, Shindel AW, Mwamukonda KB, Lue TF (2010) The future is today: emerging drugs for the treatment of erectile dysfunction. Expert Opin Emerging Drugs 15:467–480

    Google Scholar 

  5. Briganti A, Salonia A, Gallina A, et al (2005) Drug insight: oral phosphodiesterase type 5 inhibitors for erectile dysfunction. Nat Clin Pract Urol 2:239–247

    PubMed  Google Scholar 

  6. Giuliano F, Rampin O (2004) Neural control of erection. Physiol Behav 83:189–201

    PubMed  Google Scholar 

  7. Chen KK, Chan SH, Chang LS, Chan JY (1997) Participation of paraventricular nucleus of hypothalamus in central regulation of penile erection in the rat. J Urol 158:238–244

    PubMed  Google Scholar 

  8. Courtois FJ, Macdougall JC (1988) Higher CNS control of penile responses in rats: the effect of hypothalamic stimulation. Physiol Behav 44:165–171

    PubMed  Google Scholar 

  9. Marson L, McKenna KE (1994) Stimulation of the hypothalamus initiates the urethrogenital reflex in male rats. Brain Res 638:103–108

    PubMed  Google Scholar 

  10. Liu YC, Salamone JD, Sachs BD (1997) Impaired sexual response after lesions of the paraventricular nucleus of the hypothalamus in male rats. Behav Neurosci 111:1361–7

    PubMed  Google Scholar 

  11. Liu YC, Sachs BD (1999) Erectile function in male rats after lesions in the lateral paragigantocellular nucleus. Neurosci Lett 262:203–206

    PubMed  Google Scholar 

  12. Giuliano F, Rampin O (2000) Central neural regulation of penile erection. Neurosci Biobehav R 24:517–33

    Google Scholar 

  13. Argiolas A, Melis MR (2005) Central control of penile erection: role of the paraventricular nucleus of the hypothalamus. Prog Neurobiol 76:1–21

    PubMed  Google Scholar 

  14. Steers WD (2000) Neural pathways and central sites involved in penile erection: neuroanatomy and clinical implications. Neurosci Biobehav R 24:507–516

    Google Scholar 

  15. Jänig W, McLachlan EM (1987) Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol Rev 67: 1332–1404

    PubMed  Google Scholar 

  16. McKenna KE, Nadelhaft I (1986) The organization of the pudendal nerve in the male and female rat. J Comp Neurol 248:532–549

    PubMed  Google Scholar 

  17. Schrøder HD (1980) Organization of the motoneurons innervating the pelvic muscles of the male rat. J Comp Neurol 192:567–587

    PubMed  Google Scholar 

  18. Breedlove SM, Arnold AP (1980) Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord. Science 210:564–566

    PubMed  Google Scholar 

  19. Wagner CK, Clemens LG (1989) Anatomical organization of the sexually dimorphic perineal neuromuscular system in the house mouse. Brain Res 499:93–100

    PubMed  Google Scholar 

  20. Sengelaub DR, Forger NG (2008) The spinal nucleus of the bulbocavernosus: firsts in androgen-dependent neural sex differences. Horm Behav 53:596–612

    PubMed  PubMed Central  Google Scholar 

  21. Phoenix CH, Goy RW, Gerall AA, Young WC (1959) Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65:369–382

    PubMed  Google Scholar 

  22. Morris JA, Jordan CL, Breedlove SM (2004) Sexual differentiation of the vertebrate nervous system. Nat Neurosci 7:1034–1039

    PubMed  Google Scholar 

  23. Raisman G, Field PM (1973) Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res 54:1–29

    PubMed  Google Scholar 

  24. Allen LS, Hines M, Shryne JE, Gorski RA (1989) Two sexually dimorphic cell groups in the human brain. J Neurosci 9:497–506

    PubMed  Google Scholar 

  25. Nadelhaft I, McKenna KE (1987) Sexual dimorphism in sympathetic preganglionic neurons of the rat hypogastric nerve. J Comp Neurol 256:308–315

    PubMed  Google Scholar 

  26. Wee BE, Clemens LG (1987) Characteristics of the spinal nucleus of the bulbocavernosus are influenced by genotype in the house mouse. Brain Res 424:305–310

    PubMed  Google Scholar 

  27. Jordan CL, Breedlove SM, Arnold AP (1982) Sexual dimorphism and the influence of neonatal androgen in the dorsolateral motor nucleus of the rat lumbar spinal cord. Brain Res 249:309–314

    PubMed  Google Scholar 

  28. Sengelaub DR, Arnold AP (1989) Hormonal control of neuron number in sexually dimorphic spinal nuclei of the rat: I. Testosterone-regulated death in the dorsolateral nucleus. J Comp Neurol 280:622–629

    PubMed  Google Scholar 

  29. Schrøder HD (1981) Onuf’s nucleus X: a morphological study of a human spinal nucleus. Anat Embryol 162:443–453

    PubMed  Google Scholar 

  30. Arnold AP, Gorski RA (1984) Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci 7:413–442

    PubMed  Google Scholar 

  31. De Vries GJ, Panzica GC (2006) Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience 138:947–955

    PubMed  PubMed Central  Google Scholar 

  32. Forger NG (2006) Cell death and sexual differentiation of the nervous system. Neuroscience 138:929–938

    PubMed  Google Scholar 

  33. de Vries GJ, Södersten P (2009) Sex differences in the brain: the relation between structure and function. Horm Behav 55:589–596

    PubMed  PubMed Central  Google Scholar 

  34. Davidson JM (1966) Activation of the male rat’s sexual behavior by intracerebral implantation of androgen. Endocrinology 79:783–794

    PubMed  Google Scholar 

  35. Lisk RD (1967) Neural localization for androgen activation of copulatory behavior in the male rat. Endocrinology 80:754–761

    PubMed  Google Scholar 

  36. Mills TM, Reilly CM, Lewis RW (1996) Androgens and penile erection: a review. J Androl 17:633–638

    PubMed  Google Scholar 

  37. Mills TM, Lewis RW (1999) The role of andorgens in the erectile response: a 1999 perspective. Mol Urol 3:75–86

    PubMed  Google Scholar 

  38. Gray PB, Singh AB, Woodhouse LJ, et al (2005) Dose-dependent effects of testosterone on sexual function, mood, and visuospatial cognition in older men. J Clin Endocrinol Metab 90:3838–3846

    PubMed  Google Scholar 

  39. Gooren LJG, Saad F (2006) Recent insights into androgen action on the anatomical and physiological substrate of penile erection. Asian J Androl 8:3–9

    PubMed  Google Scholar 

  40. Buvat J, Maggi M, Gooren L, et al (2010) Endocrine aspects of male sexual dysfunctions. J Sex Med 7:1627–1656

    PubMed  Google Scholar 

  41. Shabsigh R, Rajfer J, Aversa A, et al (2006) The evolving role of testosterone in the treatment of erectile dysfunction. Int J Clin Pract 60:1087–1092

    PubMed  Google Scholar 

  42. Davidson JM, Camargo CA, Smith ER (1979) Effects of androgen on sexual behavior in hypogonadal men. J Clin Endocrinol Metab 48:955–958

    PubMed  Google Scholar 

  43. O’Carroll R, Shapiro C, Bancroft J (1985) Androgens, behaviour and nocturnal erection in hypogonadal men: the effects of varying the replacement dose. Clin Endocrinol (Oxf) 23:527–538

    Google Scholar 

  44. Skakkebaek NE, Bancroft J, Davidson DW, Warner P (1981) Androgen replacement with oral testosterone undecanoate in hypogonadal men: a double blind controlled study. Clin Endocrinol (Oxf) 14:49–61

    Google Scholar 

  45. Hellstrom WJ (2008) Clinical applications of centrally acting agents in male sexual dysfunction. Int J Impot Res 20:S17–S23

    PubMed  Google Scholar 

  46. Barbeau A (1969) L-dopa therapy in Parkinson’s disease: a critical review of nine years’ experience. Can Med Assoc J 101:59–68

    PubMed  PubMed Central  Google Scholar 

  47. Bowers MB, Van Woert M, Davis L (1971) Sexual behavior during L-dopa treatment for parkinsonism. Am J Psychiat127: 1691–1693

    Google Scholar 

  48. Giuliano F, Allard J (2000) Dopamine and male sexual function. Eur Urol 40:601–608

    Google Scholar 

  49. Hull EM, Dominguez JM (2006) Getting his act together: roles of glutamate, nitric oxide, and dopamine in the medial preoptic area. Brain Res 1126:66–75

    PubMed  Google Scholar 

  50. Hull EM, Du J, Lorrain DS, Matuszewich L (1995) Extracellular dopamine in the medial preoptic area: implications for sexual motivation and hormonal control of copulation. J Neurosci 15:7465–7471

    PubMed  Google Scholar 

  51. Hull EM, Du J, Lorrain DS, Matuszewich L (1997) Testosterone, preoptic dopamine, and copulation in male rats. Brain Res Bull 44:327–333

    PubMed  Google Scholar 

  52. Scaletta LL, Hull EM (1990) Systemic or intracranial apomorphine increases copulation in long-term castrated male rats. Pharmacol Biochem Behav 37:471–475

    PubMed  Google Scholar 

  53. Benassi-Benelli A, Ferrari F, Quarantotti BP (1979) Penile erection induced by apomorphine and N-n-propyl-norapomorphine in rats. Arch Int Pharmacodyn Ther 242:241–247

    PubMed  Google Scholar 

  54. Rampin O, Jerome N, Suaudeau C (2003) Proerectile effects of apomorphine in mice. Life Sci 72:2329–2336

    PubMed  Google Scholar 

  55. Hull EM, Muschamp JW, Sato S (2004) Dopamine and serotonin: influences on male sexual behavior. Physiol Behav 83:291–307

    PubMed  Google Scholar 

  56. Melis MR, Argiolas A, Gessa GL (1987) Apomorphine-induced penile erection and yawning: site of action in brain. Brain Res 415:98–104

    PubMed  Google Scholar 

  57. Melis MR, Argiolas A (1995) Dopamine and sexual behavior. Neurosci Biobehav Rev 19:19–38

    PubMed  Google Scholar 

  58. Chen KK, Chan JY, Chang LS (1999) Dopaminergic neurotransmission at the paraventricular nucleus of hypothalamus in central regulation of penile erection in the rat. J Urol 162:237–242

    PubMed  Google Scholar 

  59. Giuliano F, Argiolas A, Bernabé J, et al (2001) Comparison of the pro-erectile effect of two hexarelin analogues EP80661 and EP 91072 with apomorphine after intravenous or intraparaventricular nucleus delivery in anaesthesized rats. Int J Impotence Res 13:S4–S15

    Google Scholar 

  60. López HH, Ettenberg A (2002) Sexually conditioned incentives: attenuation of motivational impact during dopamine receptor antagonism. Pharmacol Biochem Behav 72:65–72

    PubMed  Google Scholar 

  61. Argiolas A, Melis MR, Gessa GL (1985) Intraventricular oxytocin induces yawning and penile erection in rats. Eur J Pharmacol 117:395–396

    PubMed  Google Scholar 

  62. Argiolas A, Melis MR, Gessa GL (1986) Oxytocin: an extremely potent inducer of penile erection and yawning in male rats. Eur J Pharmacol 130:265–272

    PubMed  Google Scholar 

  63. Arletti R, Benelli A, Bertolini A (1990) Sexual behavior of aging male rats is stimulated by oxytocin. Eur J Pharmacol 179:377–381

    PubMed  Google Scholar 

  64. Melis MR, Spano MS, Succu S, Argiolas A (1999) The oxytocin antagonist d(CH2)5Tyr(Me)2-Orn8-vasotocin reduces noncontact penile erections in male rats. Neurosci Lett 265:171–174

    PubMed  Google Scholar 

  65. Argiolas A, Melis MR (2004) The role of oxytocin and the paraventricular nucleus in the sexual behaviour of male mammals. Physiol Behav 83:309–317

    PubMed  Google Scholar 

  66. Skagerberg G, Björklund A, Lindvall O, Schmidt RH (1982) Origin and termination of the diencephalo-spinal dopamine system in the rat. Brain Res Bull 9:237–244

    PubMed  Google Scholar 

  67. Skagerberg G, Lindvall O (1985) Organization of diencephalic dopamine neurones projecting to the spinal cord in the rat. Brain Res 342:340–351

    PubMed  Google Scholar 

  68. Wagner CK, Clemens LG (1993) Neurophysin-containing pathway from the paraventricular nucleus of the hypothalamus to a sexually dimorphic motor nucleus in lumbar spinal cord. J Comp Neurol 336:106–116

    PubMed  Google Scholar 

  69. Tang Y, Rampin O, Calas A, et al (1998) Oxytocinergic and serotonergic innervation of identified lumbosacral nuclei controlling penile erection in the male rat. Neuroscience 82:241–254

    PubMed  Google Scholar 

  70. Véronneau-Longueville F, Rampin O, Freund-Mercier MJ, et al (1999) Oxytocinergic innervation of autonomic nuclei controlling penile erection in the rat. Neuroscience 93:1437–1447

    PubMed  Google Scholar 

  71. Giuliano F, Bernabé J, McKenna K, et al (2001) Spinal proerectile effect of oxytocin in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 280:1870–1877

    Google Scholar 

  72. Argiolas A, Collu M, D’Aquila P, et al (1989) Apomorphine stimulation of male copulatory behavior is prevented by the oxytocin antagonist d(CH2)5 Tyr(Me)-Orn8-vasotocin in rats. Pharmacol Biochem Behav 33:81–83

    PubMed  Google Scholar 

  73. Melis MR, Mauri A, Argiolas A (1994) Apomorphine-and oxytocin-induced penile erection and yawning in intact and castrated male rats: effect of sexual steroids. Neuroendocrinology 59:349–354

    PubMed  Google Scholar 

  74. Baskerville TA, Douglas AJ (2008) Interactions between dopamine and oxytocin in the control of sexual behaviour. In: Advances in vasopressin and oxytocin — From Genes to behaviour to disease. Elsevier, pp 277–290

  75. Lee HJ, Macbeth AH, Pagani JH, Scott-Young W (2009) Oxytocin: the great facilitator of life. Prog Neurobiol 88:127–151

    PubMed  PubMed Central  Google Scholar 

  76. Melis MR, Argiolas A, Gessa GL (1989) Evidence that apomorphine induces penile erection and yawning by releasing oxytocin in the central nervous system. Eur J Pharmacol 164:565–570

    PubMed  Google Scholar 

  77. Melis MR, Argiolas A (1993) Nitric oxide synthase inhibitors prevent apomorphine- and oxytocin-induced penile erection and yawning in male rats. Brain Res Bull 32:71–74

    PubMed  Google Scholar 

  78. Melis MR, Argiolas A (1997) Role of central nitric oxide in the control of penile erection and yawning. Prog Neuropsychopharmacol Biol Psychiatry 21:899–922

    PubMed  Google Scholar 

  79. Melis MR, Succu S, Mauri A, Argiolas A (1998) Nitric oxide production is increased in the paraventricular nucleus of the hypothalamus of male rats during non-contact penile erections and copulation. Eur J Neurosci 10:1968–1974

    PubMed  Google Scholar 

  80. Ignarro LJ, Bush PA, Buga GM, et al (1990) Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun 170:843–850

    PubMed  Google Scholar 

  81. Kim N, Azadzoi KM, Goldstein I, Saenz de Tejada I (1991) A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J Clin Invest 88:112–118

    PubMed  PubMed Central  Google Scholar 

  82. Toda N, Ayajiki K, Okamura T (2005) Nitric oxide and penile erectile function. Pharmacol Ther 106:233–266

    PubMed  Google Scholar 

  83. Hull EM, Dominguez JM (2007) Sexual behavior in male rodents. Horm Behav 52:45–55

    PubMed  PubMed Central  Google Scholar 

  84. Malmnäs CO (1976) The significance of dopamine, vs other catecholamines, for L-dopa induced facilitation of sexual behavior in the castrated male rat. Pharmacol Biochem Behav 4:521–526

    PubMed  Google Scholar 

  85. Panzica GC, Viglietti-Panzica C, Sica M, et al (2006) Effects of gonadal hormones on central nitric oxide producing systems. Neuroscience 138:987–995

    PubMed  Google Scholar 

  86. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360

    PubMed  Google Scholar 

  87. Weigel NL, Moore NL (2007) Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol Endocrinol 21:2311–2319

    PubMed  Google Scholar 

  88. Charlier TD, Balthazart J (2005) Modulation of hormonal signaling in the brain by steroid receptor coactivators. Rev Neurosci 16:339–357

    PubMed  Google Scholar 

  89. Murphy AZ, Hoffman GE (2001) Distribution of gonadal steroid receptor-containing neurons in the preoptic-periaqueductal graybrainstem pathway: a potential circuit for the initiation of male sexual behavior. J Comp Neurol 438:191–212

    PubMed  Google Scholar 

  90. Hamson DK, Jones BA, Watson NV (2004) Distribution of androgen receptor immunoreactivity in the brainstem of male rats. Neuroscience 127:797–803

    PubMed  Google Scholar 

  91. Patchev VK, Schroeder J, Goetz F, et al (2004) Neurotropic action of androgens: principles, mechanisms and novel targets. Experimental gerontology 39:1651–1660

    PubMed  Google Scholar 

  92. Merchenthaler I, Lane MV, Numan S, Dellovade TL (2004) Distribution of estrogen receptor alpha and beta in the mouse central nervous system: in vivo autoradiographic and immunocytochemical analyses. J Comp Neurol 473:270–291

    PubMed  Google Scholar 

  93. Vanderhorst VG, Gustafsson JA, Ulfhake B (2005) Estrogen receptor-alpha and -beta immunoreactive neurons in the brainstem and spinal cord of male and female mice: relationships to monoaminergic, cholinergic, and spinal projection systems. J Comp Neurol 488:152–179

    PubMed  Google Scholar 

  94. Bingham B, Williamson M, Viau V (2006) Androgen and estrogen receptor-beta distribution within spinal-projecting and neurosecretory neurons in the paraventricular nucleus of the male rat. J Comp Neurol 499:911–923

    PubMed  Google Scholar 

  95. Normandin JJ, Murphy AZ (2008) Nucleus paragigantocellularis afferents in male and female rats: organization, gonadal steroid receptor expression, and activation during sexual behavior. J Comp Neurol 508:771–794

    PubMed  PubMed Central  Google Scholar 

  96. Vanderhorst VG, Terasawa E, Ralston HJ 3rd (2009) Estrogen receptor-alpha immunoreactive neurons in the brainstem and spinal cord of the female rhesus monkey: species-specific characteristics. Neuroscience 158:798–810

    PubMed  PubMed Central  Google Scholar 

  97. Raskin K, de Gendt K, Duittoz A, et al (2009) Conditional inactivation of androgen receptor gene in the nervous system: effects on male behavioral and neuroendocrine responses. J Neurosci 29:4461–4470

    PubMed  Google Scholar 

  98. Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 388:507–525

    PubMed  Google Scholar 

  99. Papka RE, Storey-Workley M, Shughrue PJ, et al (2001) Estrogen receptor-alpha and beta- immunoreactivity and mRNA in neurons of sensory and autonomic ganglia and spinal cord. Cell Tissue Res 304:193–214

    PubMed  Google Scholar 

  100. Keast JR, Gleeson RJ (1998) Androgen receptor immunoreactivity is present in primary sensory neurons of male rats. Neuroreport 9:4137–4140

    PubMed  Google Scholar 

  101. Gréco B, Edwards DA, Zumpe D, et al (1998) Fos induced by mating or noncontact sociosexual interaction is colocalized with androgen receptors in neurons within the forebrain, midbrain, and lumbosacral spinal cord of male rats. Horm Behav 33:125–138

    PubMed  Google Scholar 

  102. Lumbroso S, Sandillon F, Georget V, et al (1996) Immunohistochemical localization and immunoblotting of androgen receptor in spinal neurons of male and female rats. Eur J Endocrinol 134:626–632

    PubMed  Google Scholar 

  103. Watkins TW, Keast JR (1999) Androgen-sensitive preganglionic neurons innervate the male rat pelvic ganglion. Neuroscience 93:1147–1157

    PubMed  Google Scholar 

  104. Jordan C (1997) Androgen receptor (AR) immunoreactivity in rat pudendal motoneurons: implications for accessory proteins. Horm Behav 32:1–10

    PubMed  Google Scholar 

  105. Zuloaga DG, Morris JA, Monks DA, et al (2007) Androgensensitivity of somata and dendrites of spinal nucleus of the bulbocavernosus (SNB) motoneurons in male C57BL6J mice. Horm Behav 51:207–212

    PubMed  PubMed Central  Google Scholar 

  106. Schirar A, Chang C, Rousseau JP (1997) Localization of androgen receptor in nitric oxide synthase- and vasoactive intestinal peptide-containing neurons of the major pelvic ganglion innervating the rat penis. J Neuroendocrinol 9:141–150

    PubMed  Google Scholar 

  107. Keast JR, Saunders RJ (1998) Testosterone has potent, selective effects on the morphology of pelvic autonomic neurons which control the bladder, lower bowel and internal reproductive organs of the male rat. Neuroscience 85:543–556

    PubMed  Google Scholar 

  108. Edwards DA (1971) Neonatal administration of androstenedione, testosterone or testosterone propionate: Effects on ovulation, sexual receptivity and aggressive behavior in female mice. Physiol Behav 6:223–228

    PubMed  Google Scholar 

  109. Whalen RE, Luttge WG (1971) Testosterone, androstenedione and dihydrotestosterone: effects on mating behavior of male rats. Horm Behav 2:117–125

    Google Scholar 

  110. Edwards DA, Burge KG (1971) Estrogenic arousal of aggressive behavior and masculine sexual behavior in male and female mice. Horm Behav 2:239–245

    Google Scholar 

  111. Luttge WG, Hall NR (1973) Differential effectiveness of testosterone and its metabolites in the induction of male sexual behavior in two strains of albino mice. Horm Behav 4:31–43

    Google Scholar 

  112. Wallis CJ, Luttge WG (1975) Maintenance of male sexual behavior by combined treatment with oestrogen and dihydrotestosterone in CD-1 mice. J Endocrinol 66:257–262

    PubMed  Google Scholar 

  113. Beyer C, MoralÍ G, Naftolin F, et al (1976) Effect of some antiestrogens and aromatase inhibitors on androgen induced sexual behavior in castrated male rats. Horm Behav 7:353–363

    PubMed  Google Scholar 

  114. O’Hanlon JK, Meisel RL, Sachs BD (1981) Estradiol maintains castrated male rats’ sexual reflexes in copula, but not ex copula. Behav Neural Biol 32:269–273

    PubMed  Google Scholar 

  115. Kaplan ME, McGinnis MY (1989) Effects of ATD on male sexual behavior and androgen receptor binding: a reexamination of the aromatization hypothesis. Horm Behav 23:10–26

    PubMed  Google Scholar 

  116. Bonsall RW, Clancy AN, Michael RP (1992) Effects of the nonsteroidal aromatase inhibitor, fadrozole, on sexual behavior in male rats. Horm Behav 26:240–254

    PubMed  Google Scholar 

  117. Holmes GM, Sachs BD (1992) Erectile function and bulbospongiosus EMG activity in estrogen-maintained castrated rats vary with behavioral context. Horm Behav 26:406–419

    PubMed  Google Scholar 

  118. Moralí G, Lemus AE, Munguía R, et al (1993) Induction of male sexual behavior in the rat by 7 alphamethyl-19-nortestosterone, an androgen that does not undergo 5 alpha-reduction. Biol Reprod 49:577–581

    PubMed  Google Scholar 

  119. Vagell ME, McGinnis MY (1997) The role of aromatization in the restoration of male rat reproductive behavior. J Neuroendocrinol 9:415–421

    PubMed  Google Scholar 

  120. Vagell ME, McGinnis MY (1998) The role of gonadal steroid receptor activation in the restoration of sociosexual behavior in adult male rats. Horm Behav 33, 163–179

    PubMed  Google Scholar 

  121. Putnam SK, Du J, Sato S, Hull EM (2001) Testosterone restoration of copulatory behavior correlates with medial preoptic dopamine release in castrated male rats. Horm Behav 39:216–224

    PubMed  Google Scholar 

  122. Cooke BM, Breedlove SM, Jordan CL (2003) Both estrogen receptors and androgen receptors contribute to testosteroneinduced changes in the morphology of the medial amygdala and sexual arousal in male rats. Horm Behav 43:336–346

    PubMed  Google Scholar 

  123. Roselli CE, Cross E, Poonyagariyagorn HK, Stadelman HL (2003) Role of aromatization in anticipatory and consummatory aspects of sexual behavior in male rats. Horm Behav 44:146–151

    PubMed  Google Scholar 

  124. Sato T, Matsumoto T, Kawano H, et al (2004) Brain masculinization requires androgen receptor function. Proc Natl Acad Sci USA 101:1673–1678

    PubMed  PubMed Central  Google Scholar 

  125. Burns-Cusato M, Scordalakes EM, Rissman EF (2004) Of mice and missing data: what we know (and need to learn) about male sexual behavior. Physiol Behav 83:217–232

    PubMed  Google Scholar 

  126. Harding SM, McGinnis MY (2004) Androgen receptor blockade in the MPOA or VMN: effects on male sociosexual behaviors. Physiol Behav 81:671–680

    PubMed  Google Scholar 

  127. Putnam SK, Sato S, Riolo JV, Hull EM (2005) Effects of testosterone metabolites on copulation, medial preoptic dopamine, and NOS-immunoreactivity in castrated male rats. Horm Behav 47:513–522

    PubMed  Google Scholar 

  128. Finney HC, Erpino MJ (1976) Synergistic effect of estradiol benzoate and dihydrotestosterone on aggression in mice. Horm Behav 7:391–400

    PubMed  Google Scholar 

  129. Zuloaga DG, Puts DA, Jordan CL, Breedlove SM (2008) The role of androgen receptors in the masculinization of brain and behavior: What we’ve learned from the testicular feminization mutation. Horm Behav 53:613–626

    PubMed  PubMed Central  Google Scholar 

  130. Ogawa S, Lubahn DB, Korach KS, Pfaff DW (1997) Behavioral effects of estrogen receptor gene disruption in male mice. Proc Natl Acad Sci USA 94:1476

    PubMed  PubMed Central  Google Scholar 

  131. Wersinger SR, Sannen K, Villalba C, et al (1997) Masculine sexual behavior is disrupted in male and female mice lacking a functional estrogen receptor alpha gene. Horm Behav 32: 176–183

    PubMed  Google Scholar 

  132. Ogawa S, Eng V, Taylor J, et al (1998) Roles of estrogen receptor-alpha gene expression in reproduction-related behaviors in female mice. Endocrinology 139:5070

    PubMed  Google Scholar 

  133. Ogawa S, Washburn TF, Taylor J, et al (1998) Modifications of testosterone-dependent behaviors by estrogen receptor-alpha gene disruption in male mice. Endocrinology 139:5058

    PubMed  Google Scholar 

  134. Honda S-ichiro, Harada N, Ito S, et al (1998) Disruption of sexual behavior in male aromatase-deficient mice lacking exons 1 and 2 of the cyp19 gene. Biochem Bioph Res Co 252:445–449

    Google Scholar 

  135. Ogawa S, Chan J, Chester AE, et al (1999) Survival of reproductive behaviors in estrogen receptor beta gene-deficient (betaERKO) male and female mice. Proc Natl Acad Sci USA 96:12887–12892

    PubMed  PubMed Central  Google Scholar 

  136. Ogawa S, Chester AE, Hewitt SC, et al (2000) Abolition of male sexual behaviors in mice lacking estrogen receptors alpha and beta (alpha\betaERKO). Proc Natl Acad Sci USA 97:14737

    PubMed  PubMed Central  Google Scholar 

  137. Toda K, Okada T, Takeda K, et al (2001) Oestrogen at the neonatal stage is critical for the reproductive ability of male mice as revealed by supplementation with 17beta-oestradiol to aromatase gene (Cyp19) knockout mice. J Endocrinol 168:455–463

    PubMed  Google Scholar 

  138. Robertson KM, Simpson ER, Lacham-Kaplan O, Jones ME (2001) Characterization of the fertility of male aromatase knockout mice. J Androl 22:825–830

    PubMed  Google Scholar 

  139. Scordalakes EM, Imwalle DB, Rissman EF (2002) Oestrogen’s masculine side: mediation of mating in male mice. Reproduction 124:331–338

    PubMed  Google Scholar 

  140. Bakker J, Honda S, Harada N, Balthazart J (2002) Sexual partner preference requires a functional aromatase (cyp19) gene in male mice. Horm Behav 42:158–171

    PubMed  Google Scholar 

  141. Matsumoto T, Honda S-ichiro, Harada N (2003) Alteration in sex-specific behaviors in male mice lacking the aromatase gene. Neuroendocrinology 77:416–424

    PubMed  Google Scholar 

  142. Temple JL, Scordalakes EM, Bodo C, et al (2003) Lack of functional estrogen receptor beta gene disrupts pubertal male sexual behavior. Horm Behav 44:427–434

    PubMed  Google Scholar 

  143. Ohno S, Geller LN, Young Lai EV (1974) Tfm mutation and masculinization vs feminization of the mouse central nervous system. Cell 3:235–242

    Google Scholar 

  144. Eddy EM, Washburn TF, Bunch DO, et al (1996) Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology 137:4796–4805

    PubMed  Google Scholar 

  145. Matsumoto T, Takeyama K, Sato T, Kato S (2003) Androgen receptor functions from reverse genetic models. J Steroid Biochem Mol Biol 85:95–99

    PubMed  Google Scholar 

  146. De Gendt K, Swinnen JV, Saunders PT, et al (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA 101:1327–1332

    PubMed  PubMed Central  Google Scholar 

  147. Shapiro BH, Goldman AS, Steinbeck HF, Neumann F (1976) Is feminine differentiation of the brain hormonally determined? Experientia 32:650–651

    PubMed  Google Scholar 

  148. Beach FA, Buehler MG (1977) Male rats with inherited insensitivity to androgen show reduced sexual behavior. Endocrinology 100:197–200

    PubMed  Google Scholar 

  149. Olsen KL (1979) Induction of male mating behavior in androgen-insensitive (Tfm) and normal (King-Holtzman) male rats: effect of testosterone propionate, estradiol benzoate, and dihydrotestosterone. Horm Behav 13:66–84

    PubMed  Google Scholar 

  150. Bodo C, Rissman EF (2007) Androgen receptor is essential for sexual differentiation of responses to olfactory cues in mice. Eur J Neurosci 25:2182–2190

    PubMed  Google Scholar 

  151. Morris JA, Jordan CL, Dugger BN, Breedlove SM (2005) Partial demasculinization of several brain regions in adult male (XY) rats with a dysfunctional androgen receptor gene. J Comp Neurol 487:217–226

    PubMed  Google Scholar 

  152. Sengelaub DR, Jordan CL, Kurz EM, Arnold AP (1989) Hormonal control of neuron number in sexually dimorphic spinal nuclei of the rat: II. Development of the spinal nucleus of the bulbocavernosus in androgen-insensitive (Tfm) rats. J Comp Neurol 280:630–636

    PubMed  Google Scholar 

  153. Bodo C, Kudwa AE, Rissman EF (2006) Both estrogen receptor-alpha and -beta are required for sexual differentiation of the anteroventral periventricular area in mice. Endocrinology 147:415–420

    PubMed  Google Scholar 

  154. Simerly RB, Zee MC, Pendleton JW, et al (1997) Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc Natl Acad Sci USA 94:14077–14082

    PubMed  PubMed Central  Google Scholar 

  155. Bodo C, Rissman EF (2006) New roles for estrogen receptor beta in behavior and neuroendocrinology. Front Neuroendocrinol 27:217–232

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Raskin or S. Mhaouty-Kodja.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Raskin, K., Mhaouty-Kodja, S. Testostérone et contrôle central de l’érection. Basic Clin. Androl. 21, 175–185 (2011). https://doi.org/10.1007/s12610-011-0135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12610-011-0135-2

Mots clés

Keywords