Skip to main content
  • Revue / Review
  • Open access
  • Published:

Les différentes anomalies de la reproduction masculine sont-elles en augmentation ? Faits et controverses, possibles facteurs en cause: une analyse actualisée des données de la littérature et des registres

Are abnormalities of male reproductive function becoming increasingly common? Facts and controversies, possible causative factors: an up to date analysis of the literature and of disease registers

Résumé

Au cours des dernières décennies, de nombreuses observations dans la faune sauvage d’anomalies relatives à l’appareil génital et à la fonction de reproduction mâle, certaines évoquant les données de la toxicologie expérimentale, ont conduit à s’interroger sur la toxicité de facteurs environnementaux pour la reproduction de l’homme. De plus, un certain nombre d’études suggère une augmentation de la prévalence des troubles de la reproduction de l’homme adulte au cours des dernières décennies dans de nombreux pays développés. Les données les mieux documentées concernent le cancer du testicule, son rythme de croissance suggérant le rôle de facteurs environnementaux et/ou de mode de vie. Toutefois, des différences régionales et ethniques considérables dans les taux d’incidence absolue pourraient impliquer des facteurs génétiques concomitants. Parallèlement, il semble que la qualité du sperme a diminué dans de nombreux pays, à en juger aussi bien par des méta-analyses que par des analyses statistiques de données d’un seul centre. Au début des années 2000, Skakkebæk et al. à Copenhague ont formulé l’hypothèse d’une origine commune à ces différentes anomalies lors du développement du testicule durant la gestation. Existe-t-il pour ces différentes conditions des données indiquant un lien de causalité avec une exposition environnementale/professionnelle à des composés reprotoxiques ? Ne serait-ce plutôt l’exposition chronique à de très nombreux composés chimiques à faible dose qui pourrait être impliquée ? Les facteurs de style de vie jouent-ils un rôle ? L’ensemble de ces questions se fondant sur une somme d’études, dont les résultats sont loin d’être univoques, a été la source de nombreux débats aussi bien au sein de la communauté scientifique que dans les médias. Les meilleures réponses possibles à ces questions complexes sont naturellement fondamentales pour les instances en charge de l’évaluation du risque et les politiques de santé publique qu’il convient d’adopter. La présente revue donne un état des lieux actualisé de ces questions.

Abstract

In recent decades, numerous observations in wildlife of various anomalies of the male reproductive functions-some being reminiscent of experimental toxicology data-have raised questions about the possible role of environmental pollutants. A number of studies suggest an increased prevalence of reproductive disorders in adult humans in recent decades in many (but not all) Western countries. The best documented data concern testicular cancer, its increasing rate suggesting that environmental factors and/or changes in lifestyle may come into play. However, considerable regional and ethnic differences exist in absolute incidence rates, suggesting in turn the concomitant role of the genetic background. Finally, several studies suggest that semen quality has declined in many countries. In the early 2000’s, Skakkebæk’s group in Copenhagen postulated a common origin to these different abnormalities — the so-called testicular dysgenesis syndrome (TDS) — all possibly related to abnormal testis development during gestation. Is there a causal link between these different conditions and deleterious environmental and/or lifestyle factors? The answer is far from being unequivocal, and the subject, a potential major public health problem, remains a source of hot debate both within the scientific community and in the media. The present review aims to provide an updated synthesis of these complex issues.

Références

  1. Huyghe E, Plante P, Thonneau PF (2007) Testicular cancer variations in time and space in Europe. Eur Urol 51:621–628

    PubMed  Google Scholar 

  2. Matsuda T, Huyghe E, Thonneau PF (2002) Incidence du cancer du testicule au niveau mondial. Andrologie 12:149–155

    Google Scholar 

  3. Hedelin G, Remontet L (2002) Évolution du cancer du testicule en France. Andrologie 12:269–273

    Google Scholar 

  4. Skakkebæk NE, Rajpert-DeMeyts E, Jørgensen N, et al (2007) Testicular cancer trends as “whistle blowers” of testicular developmental problems in populations. Int J Androl 30:198–204

    PubMed  Google Scholar 

  5. Paulozzi LJ (1999) International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect 107:297–302

    PubMed  PubMed Central  Google Scholar 

  6. Toppari J, Kaleva M, Virtanen HE (2001) Trends in the incidence of cryptorchidism and hypospadias, and methodological limitations of registry-based data. Hum Reprod Update 7:282–286

    PubMed  Google Scholar 

  7. Boisen KA, Chellakooty M, Schmidt IM, et al (2005) Hypospadias in a cohort of 1,072 Danish newborn boys: prevalence and relationship to placental weight, anthropometrical measurements at birth, and reproductive hormone levels at 3 months of age. J Clin Endocrinol Metab 90:4041–4046

    PubMed  Google Scholar 

  8. Virtanen HE, Kaleva M, Haavisto AM, et al (2001) The birth rate of hypospadias in the Turku area in Finland. APMIS 109:96–100

    PubMed  Google Scholar 

  9. Pierik FH, Burdorf A, Nijman JM, et al (2002) A high hypospadias rate in the Netherlands. Hum Reprod 17:1112–1115

    PubMed  Google Scholar 

  10. Porter MP, Faizan MK, Grady RW, et al (2005) Hypospadias in Washington State: maternal risk factors and prevalence trends. Pediatrics 115:495–499

    Google Scholar 

  11. Nassar N, Bower C, Barker A (2007) Increasing prevalence of hypospadias in Western Australia, 1980–2000. Arch Dis Child 92:580–584

    PubMed  PubMed Central  Google Scholar 

  12. Toledano MB, Hansell AL, Jarup L, et al (2003) Temporal trends in orchidopexy, Great Britain, 1992–1998. Environ Health Perspect 111:129–132

    PubMed  PubMed Central  Google Scholar 

  13. Richiardi L, Vizzini L, Nordenskjold A, et al (2009) Rates of orchiopexies in Sweden: 1977–1991. Int J Androl 32:473–478

    PubMed  Google Scholar 

  14. Suomi AM, Main KM, Kaleva M, et al (2006) Hormonal changes in 3-month-old cryptorchid boys. J Clin EndocrinolMetab 91:953–958

    Google Scholar 

  15. Boisen KA, Kaleva M, Main KM, et al (2004) Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet 363:1264–1269

    PubMed  Google Scholar 

  16. Pierik FH, Burdorf A, de Muinck Keizer-Schrama SM, et al (2005) The cryptorchidism prevalence among infants in the general population of Rotterdam, the Netherlands. Int J Androl 28:248–252

    PubMed  Google Scholar 

  17. John Radcliffe Hospital Cryptorchidism Study Group (1992) Cryptorchidism: a prospective study of 7,500 consecutive male births, 1984–1988. Arch Dis Child 67:892–899

    Google Scholar 

  18. Berkowitz GS, Lapinski RH, Dolgin SE, et al (1993) Prevalence and natural history of cryptorchidism. Pediatrics 92:44–49

    PubMed  Google Scholar 

  19. Jørgensen N, Carlsen E, Nermoen I, et al (2002) East-West gradient in semen quality in the Nordic-Baltic area: a study of men from the general population in Denmark, Norway, Estonia and Finland. Hum Reprod 17:2199–2208

    PubMed  Google Scholar 

  20. Carlsen E, Giwercman A, Keiding N, et al (1992) Evidence for decreasing quality of semen during past 50 years. BMJ 305:609–613

    PubMed  PubMed Central  Google Scholar 

  21. Jouannet P, Wang C, Eustache F, et al (2001) Semen quality and male reproductive health: the controversy about human sperm concentration decline. APMIS 109:333–344

    PubMed  Google Scholar 

  22. Swan SH, Elkin EP, Fenster L (1997) Have sperm densities declined? A re-analysis of global trend data. Environ Health Perspect 105:1228–1232

    PubMed  PubMed Central  Google Scholar 

  23. Auger J, Kunstmann JM, Czyglik F, et al (1995) Decline in semen quality among fertile men in Paris during the past 20 years. N Engl J Med 332:281–285

    PubMed  Google Scholar 

  24. Jørgensen N, Andersen AG, Eustache F, et al (2001) Regional differences in semen quality in Europe. Hum Reprod 16:1012–1019

    PubMed  Google Scholar 

  25. Eustache F, Auger J, Cabrol D, et al (2004) Are volunteers delivering semen samples in fertility studies a biased population? Hum Reprod 19:2831–2837

    PubMed  Google Scholar 

  26. Auger J, Eustache F, Ducot B, et al (2000) Intra- and inter-individual variability in human sperm concentration, motility and vitality assessment during a workshop involving ten laboratories. Hum Reprod 15:2360–2368

    PubMed  Google Scholar 

  27. Eustache F, Auger J (2003) Inter-individual variability in the morphological assessment of human sperm: effect of the level of experience and the use of standard methods. Hum Reprod 18:1018–1022

    PubMed  Google Scholar 

  28. Joffe M, Paranjothy S, Fielder H, et al (2008) Use of time to pregnancy in environmental epidemiology and surveillance. J Public Health (Oxf) 30:178–185

    Google Scholar 

  29. Jensen TK, Slama R, Ducot B, et al (2001) Regional differences in waiting time to pregnancy among fertile couples from four European cities. Hum Reprod 16:2697–2704

    PubMed  Google Scholar 

  30. Slama R, Eustache F, Ducot B, et al (2002) Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities. Hum Reprod 17:503–515

    PubMed  Google Scholar 

  31. Slama R, Kold-Jensen T, Scheike T, et al (2004) How would a decline in sperm concentration over time influence the probability of pregnancy? Epidemiology 15:458–465

    PubMed  Google Scholar 

  32. Skakkebæk NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978

    PubMed  Google Scholar 

  33. Akre O, Richiardi L (2009) Does a testicular dysgenesis syndrome exist? Hum Reprod 24:2053–2060

    PubMed  Google Scholar 

  34. Jørgensen N, Meyts ER, Main KM, et al (2010) Testicular dysgenesis syndrome comprises some but not all cases of hypospadias and impaired spermatogenesis. Int J Androl 33:298–303

    PubMed  Google Scholar 

  35. Garcia-Rodriguez J, Garcia-Martin M, Nogueras-Ocana M, et al (1996) Exposure to pesticides and cryptorchidism: geographical evidence of a possible association. Environ Health Perspect 104:1090–1095

    PubMed  PubMed Central  Google Scholar 

  36. de Cock J, Westveer K, Heederik D, et al (1994) Time to pregnancy and occupational exposure to pesticides in fruit growers in The Netherlands. Occup Environ Med 51:693–699

    PubMed  PubMed Central  Google Scholar 

  37. Tielemans E, van Kooij R, te Velde ER, et al (1999) Pesticide exposure and decreased fertilisation rates in vitro. Lancet 354:484–485

    PubMed  Google Scholar 

  38. Longnecker MP, Klebanoff MA, Brock JW, et al (2002) Maternal serum level of 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene and risk of cryptorchidism, hypospadias, and polythelia among male offspring. Am J Epidemiol 155:313–322

    PubMed  Google Scholar 

  39. Bhatia R, Shiau R, Petreas M, et al (2005) Organochlorine pesticides and male genital anomalies in the child health and development studies. Environ Health Perspect 113:220–224

    PubMed  PubMed Central  Google Scholar 

  40. Brucker-Davis F, Wagner-Mahler K, Delattre I, et al (2008) Cryptorchidism at birth in Nice area (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23:1708–1718

    PubMed  Google Scholar 

  41. Pierik FH, Klebanoff MA, Brock JW, et al (2007) Maternal pregnancy serum level of heptachlorepoxide, hexachlorobenzene, and beta-hexachlorocyclohexane and risk of cryptorchidism in offspring. Environ Res 105:364–369

    PubMed  PubMed Central  Google Scholar 

  42. Hosie S, Loff S, Witt K, et al (2000) Is there a correlation between organochlorine compounds and undescended testes? Eur J Pediatr Surg 10:304–309

    PubMed  Google Scholar 

  43. Fernandez MF, Olmos B, Granada A, et al (2007) Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: a nested case-control study. Environ Health Perspect 115(Suppl 1):8–14

    PubMed  PubMed Central  Google Scholar 

  44. Hardell L, van Bavel B, Lindstrom G, et al (2003) Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer. Environ Health Perspect 111:930–934

    PubMed  PubMed Central  Google Scholar 

  45. McGlynn KA, Quraishi SM, Graubard BI, et al (2008) Persistent organochlorine pesticides and risk of testicular germ cell tumors. J Nat Cancer Inst 100:663–671

    PubMed  Google Scholar 

  46. Damgaard IN, Jensen TK, Petersen JH, et al (2008) Risk factors for congenital cryptorchidism in a prospective birth cohort study. PLoS One 3:1–8

    Google Scholar 

  47. Andersen HR, Schmidt IM, Grandjean P, et al (2008) Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect 116:566–572

    PubMed  PubMed Central  Google Scholar 

  48. Main KM, Mortensen GK, Kaleva M, et al (2006) Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in three months old infants. Environ Health Perspect 114:270–276

    PubMed  PubMed Central  Google Scholar 

  49. Liu X, Zhang DY, Li YS, et al (2009) Di-(2-ethylhexyl) Phthalate upregulates ATF3 expression and suppresses apoptosis in mouse genital tubercle. J Occup Health 51:57–63

    PubMed  Google Scholar 

  50. Swan SH, Main KM, Liu F, et al (2005) Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 113:1056–1061

    PubMed  PubMed Central  Google Scholar 

  51. Hsieh MH, Breyer BN, Eisenberg ML, et al (2008) Associations among hypospadias, cryptorchidism, anogenital distance, and endocrine disruption. Cur Urol Rep 9:137–142

    Google Scholar 

  52. Duty SM, Calafat AM, Silva MJ, et al (2004) The relationship between environmental exposure to phthalates and computeraided sperm analysis motion parameters. J Androl 25:293–302

    PubMed  Google Scholar 

  53. Murature DA, Tang SY, Steinhardt G, et al (1987) Phthalate esters and semen quality parameters. Biomed Environ Mass Spectrom 14:473–477

    PubMed  Google Scholar 

  54. Duty SM, Calafat AM, Silva MJ, et al (2005) Phthalate exposure and reproductive hormones in adult men. Hum Reprod 20: 604–610

    PubMed  Google Scholar 

  55. Meeker JD, Calafat AM, Hauser R (2009) Urinary metabolites of di(2-ethylhexyl) phthalate are associated with decreased steroid hormone levels in adult men. J Androl 30:287–297

    PubMed  PubMed Central  Google Scholar 

  56. Main KM, Kiviranta H, Virtanen HE, et al (2007) Flame retardants in placenta and breast milk and cryptorchidism in newborn boys. Environ Health Perspect 115:1519–1526

    PubMed  PubMed Central  Google Scholar 

  57. Stoker TE, Cooper RL, Lambright VS, et al (2005) In vivo and in vitro antiandrogenic effects of DE-71, a commercial polybrominated diphenylether (PBDE) mixture. Toxicol Appl Pharmacol 207:78–88

    PubMed  Google Scholar 

  58. Lilienthal H, Hack A, Rothhärer A, et al (2006) Effects of developmental exposure to 2,2′4,4′,5-pentabromo diphenylether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behaviour in rats. Environ Health Perspect 114: 194–201

    PubMed  PubMed Central  Google Scholar 

  59. Song R, He Y, Murphy MB, et al (2008) Effects of fifteen PBDE metabolites, DE71, DE79 and TBBPA on steroidogenesis in the H295R cell line. Chemosphere 71:1888–1894

    PubMed  Google Scholar 

  60. Jensen AA, Leffers H (2008) Emerging endocrine disrupters: perfluoroalkylated substances. Int J Androl 31:161–169

    PubMed  Google Scholar 

  61. Fei C, McLaughlin JK, Lipworth L, et al (2009) Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod 24:1200–1205

    PubMed  Google Scholar 

  62. Joensen UN, Boosi R, Leffers H, et al (2009) Do perfluoroalkyl compounds impair human semen quality? Environ Health Perspect 117:923–927

    PubMed  PubMed Central  Google Scholar 

  63. Jensen MS, Mabeck LM, Toft G, et al (2005) Lower sperm counts following prenatal tobacco exposure. Hum Reprod 20:2559–2566

    PubMed  Google Scholar 

  64. Storgaard L, Bonde JP, Ernst E, et al (2003) Does smoking during pregnancy affects on spermcounts? Epidemiology 14:278–286

    PubMed  Google Scholar 

  65. Jensen TK, Jørgensen N, Punab M, et al (2004) Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European countries. Am J Epidemiol 159:49–58

    PubMed  Google Scholar 

  66. Lackmann GM, Angerer J, Tollner U (2000) Parental smoking and neonatal serum levels of polychlorinated biphenyls and hexachlorobenzene. Pediatric Res 47:598–601

    Google Scholar 

  67. Mongraw-Chaffin ML, Cohn BA, Cohen RD, et al (2008) Maternal smoking, alcohol consumption, and caffeine consumption during pregnancy in relation to a son’s risk of persistent cryptorchidism: a prospective study in the Child Health and Development Studies cohort, 1959–1967. Am J Epidemiol 167:257–261

    PubMed  Google Scholar 

  68. Berkowitz GS, Lapinski RH (1996) Risk factors for cryptorchidism: a nested case-control study. Paediatr Perinat Epidemiol 10:39–51

    PubMed  Google Scholar 

  69. Møller H, Skakkebæk NE (1997) Testicular cancer and cryptorchidism in relation to prenatal factors: case-control studies in Denmark. Cancer Causes Control 8:904–912

    PubMed  Google Scholar 

  70. Kortenkamp A (2008) Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology. Int J Androl 31:233–240

    PubMed  Google Scholar 

  71. Eustache F, Mondon F, Canivenc-Lavier MC, et al (2009) Chronic dietary exposure to a low-dose mixture of genistein and vinclozolin modifies the reproductive axis, testis transcriptome, and fertility. Environ Health Perspect 117:1272–1279

    PubMed  PubMed Central  Google Scholar 

  72. Christiansen S, Scholze M, Axelstad M, et al (2008) Combined exposure to anti-androgens causes markedly increased frequencies of hypospadias in the rat. Int J Androl 31:241–248

    PubMed  Google Scholar 

  73. Pierik FH, Burdorf A, Deddens JA, et al (2004) Maternal and paternal risk factors for cryptorchidism and hypospadias: a casecontrol study in newborn boys. Environ Health Perspect 112:1570–1576

    PubMed  PubMed Central  Google Scholar 

  74. Damgaard IN, Skakkebæk NE, Toppari J, et al (2006) Persistent pesticides in human breast milk and cryptorchidism. Environ Health Perspect 114:1133–1138

    PubMed  PubMed Central  Google Scholar 

  75. Carmichael SL, Shaw GM, Nelson V, et al (2003) Hypospadias in California: trends and descriptive epidemiology. Epidemiology 14:701–706

    PubMed  Google Scholar 

  76. Lund L, Engebjerg MC, Pedersen L, et al (2009) Prevalence of hypospadias in Danish boys: a longitudinal study, 1977–2005. Eur Urol 55:1022–1026

    PubMed  Google Scholar 

  77. Sun G, Tang D, Liang J, Wu M (2009) Increasing prevalence of hypospadias associated with various perinatal risk factors in Chinese newborns. Urology 73:1241–1245

    PubMed  Google Scholar 

  78. Abdullah NA, Pearce MS, Parker L, et al (2007) Birth prevalence of cryptorchidism and hypospadias in Northern England, 1993–2000. Arch Dis Child 92:576–579

    PubMed  PubMed Central  Google Scholar 

  79. Martínez-Frías ML, Prieto D, Prieto L, et al (2004) Secular decreasing trend of the frequency of hypospadias among newborn male infants in Spain. Birth Defects Res A Clin Mol Teratol 70:75–81

    PubMed  Google Scholar 

  80. Campbell DM, Webb JA, Hargreave TB (1987) Cryptorchidism in Scotland. BMJ 295:1235–1236.

    PubMed  PubMed Central  Google Scholar 

  81. Bonney T, Southwell B, Donnath S, et al (2009) Orchidopexy trends in the paediatric population of Victoria, 1999–2006. J Pediatr Surg 44:427–431

    PubMed  Google Scholar 

  82. Bujan L, Mansat A, Pontonnier F, et al (1996) Sperm concentration in donor 1977–1992 in Toulouse, France. BMJ 312:471–472

    PubMed  PubMed Central  Google Scholar 

  83. Andolz P, Bielsa MA, Vila J (1999) Evolution of semen quality in North-eastern Spain: a study in 22,759 infertile men over a 36 year period. Hum Reprod 14:731–735

    PubMed  Google Scholar 

  84. Vierula M, Niemi M, Keiski A, et al (1996) High and unchanged sperm counts of Finnish men. Int J Androl 19:11–17

    PubMed  Google Scholar 

  85. Menchini-Fabris F, Rossi P, Palego P, et al (1996) Declining sperm counts in Italy during the past 20 years. Andrologia 28:304

    PubMed  Google Scholar 

  86. Adamanpoulos D, Pappa A, Nicopoulou S, et al (1996) Seminal volume and total sperm number trends in men attending subfertility clinics in the Greater Athens area during the period 1977–1993. Hum Reprod 11:1936–1941

    Google Scholar 

  87. Van Waeleghem K, De Clercq N, Vermeulen L, et al (1996) Deterioration of sperm quality in young healthy Belgian men. Hum Reprod 11:325–329

    PubMed  Google Scholar 

  88. Nieschlag E, Lerchl A (1996) Declining sperm counts in European men—fact or fiction? Andrologia 28:305–306

    PubMed  Google Scholar 

  89. Gyllenborg J, Skakkebaek NE, Nielsen NC, et al (1999) Secular and seasonal changes in semen quality among young Danish men: a statistical analysis of semen samples from 1927 donor candidates during 1977–1995. Int J Androl 22:28–36

    PubMed  Google Scholar 

  90. Fisch H, Goluboff ET, Olson JH, et al (1996) Semen analysis in 1,283 men from the United States over a 25-year period: no decline in quality. Fertil Steril 65:1009–1014

    PubMed  Google Scholar 

  91. Paulsen CA, Berman NG, Wang C (1996) Data from men in greater Seattle area reveals no downward trend in semen quality: further evidence that deterioration of semen quality is not geographically uniform. Fertil Steril 65:1015–1020

    PubMed  Google Scholar 

  92. Itoh N, Kayama F, Tatsuki TJ, et al (2001) Have sperm counts deteriorated over the past 20 years in healthy, young Japanese men? Results from the Sapporo area. J Androl 22:40–44

    PubMed  Google Scholar 

  93. Zheng Y, Bonde JP, Ernst E, et al (1997) Is semen quality related to the year of birth among Danish infertility clients? Int J Epidemiol 6:1289–1297

    Google Scholar 

  94. de Mouzon J, Thonneau P, Spira A, et al (1996) Declining sperm count. Semen quality has declined among men born in France since 1950. BMJ 313:43

    PubMed  PubMed Central  Google Scholar 

  95. Zorn B, Virant-Klun I, Verdenik I, et al (1999) Semen quality changes among 2,343 healthy Slovenian men included in an IVF-ET programme from 1983 to 1996. Int J Androl 22:178–183

    PubMed  Google Scholar 

  96. Irvine DS, Cawood E, Richardson D, et al (1996) Evidence of deteriorating semen quality in the United Kingdom: birth cohort study of 577 men in Scotland over 11 years. BMJ 312:467–470

    PubMed  PubMed Central  Google Scholar 

  97. Berling S, Wölner-Hanssen P (1997) No evidence of deteriorating semen quality among men in infertile relationships during the last decade: a study of males from Southern Sweden. Hum Reprod 12:1002–1005

    PubMed  Google Scholar 

  98. Lackner J, Schatzl G, Waldhör T, et al (2005) Constant decline in sperm concentration in infertile males in an urban population: experience over 18 years. Fertil Steril 84:1657–1661

    PubMed  Google Scholar 

  99. Benshushan A, Shoshani O, Paltiel O, et al (1997) Is there really a decrease in sperm parameters among healthy young men? A survey of sperm donations during 15 years. J Assist Reprod Genet 14:347–353

    PubMed  PubMed Central  Google Scholar 

  100. Younglai EV, Collins JA, Foster WG (1998) Canadian semen quality: an analysis of sperm density among eleven academic fertility centers. Fertil Steril 70:76–80

    PubMed  Google Scholar 

  101. Handelsman DJ (1997) Sperm output of healthy men in Australia: magnitude of bias due to self-selected volunteers. Hum Reprod 12:2701–2705

    PubMed  Google Scholar 

  102. Seo JT, Rha KH, Park YS, Lee MS (2000) Semen quality over a 10-year period in 22,249 men in Korea. Int J Androl 23(4): 194–198

    PubMed  Google Scholar 

  103. Rasmussen PE, Erb K, Westergaard LG, Laursen SB (1997) No evidence for decreasing semen quality in four birth cohorts of 1,055 Danish men born between 1950 and 1970. Fertil Steril 68:1059–1064

    PubMed  Google Scholar 

  104. Sripada S, Fonseca S, Lee A, et al (2007) Trends in semen parameters in the northeast of Scotland. J Androl 28:313–319

    PubMed  Google Scholar 

  105. Almagor M, Ivnitzki I, Yaffe H, et al (2003) Changes in semen quality in Jerusalem between 1990 and 2000: a cross-sectional and longitudinal study. Arch Androl 49:139–144

    PubMed  Google Scholar 

  106. Feki NC, Abid N, Rebai A, et al (2009) Semen quality decline among men in infertile relationships: experience over 12 years in the South of Tunisia. J Androl 30:541–547

    PubMed  Google Scholar 

  107. Auger J, Jouannet P (1997) Evidence for regional differences of semen quality among fertile French men. Fédération françaises des centres d’étude et de conservation des oeufs et du sperme humains. Hum Reprod 12:740–745

    PubMed  Google Scholar 

  108. Fisch H, Goluboff ET (1996) Geographic variations in sperm counts: a potential bias in studies on semen quality. Fertil Steril 65:1044–1046

    PubMed  Google Scholar 

  109. Iwamoto T, Nozawa S, Yoshiike M, et al (2006) Semen quality of 324 fertile Japanese men. Hum Reprod 21:760–765

    PubMed  Google Scholar 

  110. Swan SH, Brazil C, Drobnis EZ, et al (2003) Geographic differences in semen quality of fertile U.S. males. Environ Health Perspect 111:414–420

    PubMed  Google Scholar 

  111. Jørgensen N, Carlsen E, Nermoen I, et al (2002) East-West gradient in semen quality in the Nordic-Baltic area: a study of men from the general population in Denmark, Norway, Estonia and Finland. Hum Reprod 17:2199–2208

    PubMed  Google Scholar 

  112. Punab M, Zilaitiene B, Jørgensen N, et al (2002) Regional differences in semen qualities in the Baltic region. Int J Androl 25:243–252

    PubMed  Google Scholar 

  113. Tsarev I, Gagonin V, Giwercman A, et al (2005) Sperm concentration in Latvian military conscripts as compared with other countries in the Nordic-Baltic area. Int J Androl 28:208–214

    PubMed  Google Scholar 

  114. Dhooge W, van Larebeke N, Comhaire F, et al (2007) Regional variations in semen quality of community-dwelling young men from Flanders are not paralleled by hormonal indices of testicular function. J Androl 28:435–443

    PubMed  Google Scholar 

  115. Paasch U, Salzbrunn A, Glander HJ, et al (2008) Semen quality in sub-fertile range for a significant proportion of young men from the general German population: a co-ordinated, controlled study of 791 men from Hamburg and Leipzig. Int J Androl 31:93–102

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Auger.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Auger, J. Les différentes anomalies de la reproduction masculine sont-elles en augmentation ? Faits et controverses, possibles facteurs en cause: une analyse actualisée des données de la littérature et des registres. Basic Clin. Androl. 21, 7–23 (2011). https://doi.org/10.1007/s12610-010-0115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12610-010-0115-y

Mots clés

Keywords