Skip to main content

Anomalies postnatales du développement de la spermatogenèse associées aux troubles de la migration testiculaire

Postnatal anomalies of spermatogenesis development associated with cryptorchidism

Résumé

La cryptorchidie, testicule non descendu dans sa position normale intrascrotale, est l’une des anomalies congénitales les plus fréquentes du système génital masculin. Le mécanisme de cette migration est un processus complexe encore mal connu. Plusieurs hypothèses étiologiques ont été avancées pour tenter d’expliquer la survenue de la cryptorchidie. L’existence d’une anomalie de la descente testiculaire, même traitée dans l’enfance, est un facteur de risque de cancer du testicule. Mais elle peut aussi se traduire à l’âge adulte par des anomalies des paramètres spermatiques et une atteinte de la fertilité. Dans la présente revue sont rassemblées les données concernant les anomalies du développement postnatal de la spermatogenèse observées en cas de troubles isolés de la migration du testicule et leurs conséquences à l’âge adulte sur les paramètres de la fertilité.

Abstract

Cryptorchidism, a non-descended testis in its physiological intrascrotal location, is one of the most frequent congenital anomalies of the male genital system. The mechanisms of the normal descent of the testis are still unclear. Several etiological hypotheses have been proposed for cryptorchidism. Cryptorchidism is associated with a greater risk of testis cancer, and is also a cause of impairment in sperm parameters and fertility in the adult age. In this article, we review the cellular and hormonal events occurring from birth to puberty in isolated cases of congenital cryptorchidism that will later, in adulthood, alter both spermatogenesis and fertility.

Références

  1. Virtanen HE, Bjerknes R, Cortes D, et al (2007) Cryptorchidism: classification, prevalence and long-term consequences. Acta Paediatr 96:611–6

    PubMed  Google Scholar 

  2. Tomiyama H, Sasaki Y, Huynh J, et al (2005) Testicular descent, cryptorchidism and inguinal hernia: the Melbourne perspective. J Pediatr Urol 1:11–25

    PubMed  Google Scholar 

  3. Hutson JM, Hasthorpe S (2005) Abnormalities of testicular descent. Cell Tissue Res 322:155–8

    PubMed  Google Scholar 

  4. Tanyel FC, Ulusu NN, Tezcan EF, et al (2003) Total calcium contents of sacs associated with inguinal hernia, hydrocele or undescended testis reflect differences by programmed cell death. Urol Int 70:211–5

    PubMed  Google Scholar 

  5. Husmann DA, Levy JB (1995) Current concepts in the pathophysiology of testicular undescent. Urology 46:267–76

    PubMed  Google Scholar 

  6. Mackay S (2000) Gonadal development in mammals at the cellular and molecular levels. Int Rev Cytol 200:47–99

    PubMed  Google Scholar 

  7. Josso N, di Clemente N, Gouedard L (2001) Anti-mullerian hormone and its receptors. Mol Cell Endocrinol 179:25–32

    PubMed  Google Scholar 

  8. Ivell R, Hartung S (2003) Molecular basis of cryptorchidism. Mol Hum Reprod 9:175–81

    PubMed  Google Scholar 

  9. Adham IM, Agoulnik AI (2004) Insulin-like 3 signalling in testicular descent. Int J Androl 27:257–65

    PubMed  Google Scholar 

  10. Krausz C, Quintina-Murci L, Fellous M, et al (2000) Absence of mutations involving the INSL3 gene in human idiopathic cryptorchidism. Mol Hum Reprod 6:298–302

    PubMed  Google Scholar 

  11. Tomboc M, Lee PA, Mitwally MF, et al (2000) Insulin-like 3/relaxin-like factor gene are associated with cryptorchidism. Clin Endocrinol Metab 85:4013–8

    Google Scholar 

  12. Lim HN, Rajpert-De Meyts E, Skakkebaek NE, et al (2001) Genetic analysis of the INSL3 gene in patients with maldescended testis. Eur J Endocrinol 144:129–37

    PubMed  Google Scholar 

  13. Marin P, Ferlin A, Moro E, et al (2001) Different insulin-like 3 (INSL3) gene mutations are not associated with human cryptorchidism. J Endocrinol Invest 14:13–5

    Google Scholar 

  14. Takahashi I, Takahashi T, Komarsu M, et al (2001) Ala/Thr60 variant of the Leydig insulin-like hormone is not associated with cryptorchidism in the Japanese population. Pediatr Int 43:256–8

    PubMed  Google Scholar 

  15. Baker LA, Nef S, Nguyen MT, et al (2001) The insulin-like 3 gene: lack of a genetic basis for human cryptorchidism. J Urol 167:2534–7

    Google Scholar 

  16. Grumbach MM (2005) Commentary: a window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. J Clin Endocrinol Metab 90:3122–7

    PubMed  Google Scholar 

  17. Winter JS, Faiman C, Hobson WC, et al (1975) Pituitary-gonadal relations in infancy I. Patterns of serum gonadotrophin concentrations from birth to four years of age in man and chimpanzee. J Clin Endocrinol Metab 40:545–51

    PubMed  Google Scholar 

  18. Bergada I, Milani C, Bedecarras P, et al (2006) Time course of the serum gonadotropin surge. Inhibins and anti-mullerian hormone in normal newborn males during the first month of life. J Clin Endocrinol Metab 41:4092–8

    Google Scholar 

  19. Andersson AM, Toppari J, Haavisto AM, et al (1998) Longitudinal reproductive hormone profiles in infants: peak of inhibin B levels in infant boys exceeds levels in adult men. J Clin Endocrinol Metab 83:675–81

    PubMed  Google Scholar 

  20. Rey RA, Belleville C, Nihoul-Fékéte C, et al (1999) Evaluation of gonadal function in 107 intersex patients by means of serum anti-mullerian hormone measurement. J Clin Endocrinol Metab 84:627–31

    PubMed  Google Scholar 

  21. Lee MM, Misra M, Donahoe PK, McLaughlin DT (2003) MIS/AMH in the assessment of cryptorchidism and intersex conditions. Mol Cell Endocrinol 21:91–8

    Google Scholar 

  22. Coughlin MT, Bellinger MF, Lee PA (1999) Age at unilateral orchiopexy: effect on hormone and sperm count in adulthood. Urology 162:986–8

    Google Scholar 

  23. Lee PA, Coughlin MT (2001) Fertility after bilateral cryptorchidism. Evaluation by paternity, hormone, and semen data. Horm Res 55:28–32

    PubMed  Google Scholar 

  24. Longui CA, Arnhold IJ, Mendoca BB, et al (1998) Serum inhibin levels before and after gonadotropin stimulation in cryptorchid boys under age 4 years. J Pediatr Endocrinol Metab 11:687–92

    PubMed  Google Scholar 

  25. De Muink Keizer-Schrama SM, Hasebroek FW, Drop SL, et al (1988) Hormonal evaluation of boys with undescended testes during their first year of life. J Clin Endocrinol Metab 66:159–64

    Google Scholar 

  26. Raivo T, Dunkel L (1999) Inverse relationship between serum inhibin B levels and FSH in prepubertal boys with cryptorchidism. Pediatr Res 46:496–500

    Google Scholar 

  27. Irkilata HC, Yildrim I, Onguru O, et al (2004) The influence of orchiopexy on serum inhibin B level: relationship with histology. J Urol 172:2402–5

    PubMed  Google Scholar 

  28. Barthold JS, Manson J, Regan V, et al (2004) Reproductive hormone levels in infants with cryptorchidism during postnatal activation of the pituitary-testicular axis. J Urol 172:1736–41

    PubMed  Google Scholar 

  29. Suomi AM, Main KM, Kaleva M, et al (2006) Hormonal changes in 3-months-old cryptorchid boys. J Clin Endocrinol Metab 91:953–8

    PubMed  Google Scholar 

  30. Hamza AF, Elrahim M, Elnagar O, et al (2001) Testicular descent: when to interfere? Eur J Pediatr Surg 11:173–6

    PubMed  Google Scholar 

  31. Bouvattier C, Carel JC, Lecointre C, et al (2002) Postnatal changes of T, LH and FSH in 46, XY infants with mutations in the AR gene. J Clin Endocrinl Metab 87:29–32

    Google Scholar 

  32. Raivo T, Toppari J, Kaleeva M, et al (2003) Serum androgen bioactivity in cryptorchid and noncryptorchid boys during postnatal reproductive hormone surge. J Clin Endocrinol Metab 88:2597–9

    Google Scholar 

  33. Kaleva M, Virtanen H, Haavisto AM, et al (2005) Does variant luteinizing hormone (V-LH) predispose to improper testicular position in late pregnancy? Pediatr Res 58:447–50

    PubMed  Google Scholar 

  34. Kubini B, Zachmann M, Albers N, et al (2000) Basal inhibin B and the testosterone response to human chorionic gonadotropin correlate in prepubertal boys. J Clin Endocrinol Metab 85:134–8

    PubMed  Google Scholar 

  35. Christiansen P, Andersson AM, Skakkebaek NE (2003) Longitudinal studies of inhibin B levels in boys and young adults with Klinefelter syndrome. J Clin Endocrinol Metab 88:888–91

    PubMed  Google Scholar 

  36. Cortes D, Thorup J, Hodgall E, et al (2007) The relation of germ cells per tubule in testes, serum inhibin B and FSH in cryptorchid boys. Pediatr Surg Int 23:163–9

    PubMed  Google Scholar 

  37. Prince FP (2001) The triphasic nature of Leydig cell development in humans, and comments on nomenclature. J Endocrinol 168:213–6

    PubMed  Google Scholar 

  38. Gaskell TL, Esnal A, Robinson LL, et al (2004) Immunohistochemical profiling of germ cells within the fetal human testis: identification of three subpopulations. Biol Reprod 71:2012–21

    PubMed  Google Scholar 

  39. Pauls K, Schorle H, Jeske W, et al (2006) Spatial expression of germ cell markers during maturation of human fetal male gonad: an immunohistochemical study. Hum Reprod 21:397–404

    PubMed  Google Scholar 

  40. Anderson RA, Fulton N, Cowan G, et al (2007) Conserved and divergent patterns of expression of DAZL, VASA and OC in the germ cells of the human fetal ovary and testis. BMC Dev Biol 7:136–9

    PubMed  PubMed Central  Google Scholar 

  41. Mitchell RT, Gowan G, Morris KD, et al (2008) Germ cell differentiation in the marmoset (Calllithrix jacchus) during fetal and neonatal life closely parallels that in human. Hum Reprod 23:2755–65

    PubMed  PubMed Central  Google Scholar 

  42. Hadziselimovic F, Thommen L, Girard J, Herzog B (1986) The significance of postnatal gonadotropin surge for testicular development in normal and cryptorchid testes. J Urol 136:274–6

    PubMed  Google Scholar 

  43. Cortes D (1998) Cryptorchidism: aspects of pathogenesis, histology and treatment. Scand J Urol Nephrol 196:1–54

    Google Scholar 

  44. Hadziselimovic F, Herzog B (2001) The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet 358:1156–7

    PubMed  Google Scholar 

  45. Cortes D, Thorup JM, Visfeldt J (2001) Cryptorchidism: aspects of fertility and neoplasms. A study including data of 1,335 consecutive boys who underwent testicular biopsy simultaneously with surgery for cryptorchidism. Horm Res 55:21–7

    PubMed  Google Scholar 

  46. Huff DS, Fenig DM, Canning DA, et al (2001) Abnormal gem cell development in cryptorchidism. Horm Res 55:11–7

    PubMed  Google Scholar 

  47. Cortes D, Thorup JM, Petersen BL (2006) Testicular histology in cryptorchid boys: aspects of fertility. J Ped Surg Special 1:34–7

    Google Scholar 

  48. Rey RA, Musse M, Venara M, Chemes HE (2009) Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microsc Res Tech, DOI 10.1002/jemt.20754

  49. Sharpe RM, McKinnel C, Kilvin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–84

    PubMed  Google Scholar 

  50. Regadera J, Martinez-Garcia F, Gonzales-Peramato P, et al (2001) Androgen receptor expression in Sertoli cells as a function of seminiferous tubule maturation in the human cryptorchid testis. J Clin Endoctinol Metab 86:413–21

    Google Scholar 

  51. Jegou B, Sharpe RM (1993) Paracrine mechanisms in testicular control. In: de Krester DM (ed) Molecular biology of the male reproductive system. Bailleres, Academic Press, NY, pp 271–310

    Google Scholar 

  52. Paniagua R, Martinez-Onsrube P, Santamaria L, et al (1990) Quantitative and ultrastructural alterations in the lamina propria and Sertoli cells in human cryptorchid testes. Int J Androl 13:470–87

    PubMed  Google Scholar 

  53. Nistal M, Riestra MI, Paniagua R (2002) Focal orchitis in undescended testes: discussion of pathogenic mechanisms of tubular atrophy. Arch Pathol Lab Med 126:64–9

    PubMed  Google Scholar 

  54. Nistal M, Paniagua R, Abaurrea MA, Santamaria L (1982) Hyperplasia and the immature appearance of Sertoli cells in primary testicular disorders. Hum Pathol 13:3–12

    PubMed  Google Scholar 

  55. Stosiek P, Kasper M, Karsten U (1990) Expression of cytokeratins 8 and 18 in human Sertoli cells of immature and atrophic seminiferous tubules. Differentiation 43:66–70

    PubMed  Google Scholar 

  56. Kliesch S, Behre HM, Hertle L, Bergmann M (1998) Alteration of Sertoli cell differentiation in the presence of carinoma in situ in human testes. J Urol 160:1894–8

    PubMed  Google Scholar 

  57. Skakkebeak NE, Rajpert-de Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–78

    Google Scholar 

  58. Nistal M, Paniagua R (2000) Correlation between testicular biopsies (prepubertal and postpubertal) and spermiogram in cryptorchid men. Hum Pathol 31:1022–30

    PubMed  Google Scholar 

  59. Hadziselimovic F, Huff D (2002) Gonadal differentiation - normal and abnormal testicular descent. Adv Exp Med Biol 511:15–21

    PubMed  Google Scholar 

  60. Hadziselimovic F, Emmons LR, Buser M (2004) A diminished postnatal surge of Ad spermatogonia in cryptorchid infants is additional evidence for hypogoandotrophic hypogonadism. Swiss Med Wkly 134:831–4

    Google Scholar 

  61. Hadziselimovic F, Zivkovic D, Bica DTG, Emmons LR (2005) The importance of mini-puberty for fertility in cryptorchidism. J Urol 174:1536–9

    PubMed  Google Scholar 

  62. Huhtaniemi I (2003) Gonadotrophin actions on the testis - genotypes and phenotypes of gonadotrophin and gonadotrophin receptor mutations. In: Soder O (ed) The developing testis. Physiology and pathology. Karger, Basel, pp 81–103

    Google Scholar 

  63. Sharpe RM, Fraser HM, Brougham MHF, et al (2003) Role of neonatal period of pituitary-testicular activity in germ cell proliferation and differentiation in the primate testis. Hum Reprod 18:2110–7

    PubMed  Google Scholar 

  64. Hadziselimovic F, Dessouky N (2008) Differences in testicular development between 5 -reductase 2 deficiency and isolated bilateral cryptorchidism. J Urol 180:1116–20

    PubMed  Google Scholar 

  65. Kim SS, Kolon TF, Casale P, et al (2008) The positive predictive value of prepubertal testis biopsy on adult sperm density in patients with bilateral undescended testes. J Urol 4:144–5

    Google Scholar 

  66. Hadziselimovic F, Hocht B, Herzog B, Buser MW (2007) Infertility in cryptorchidism is linked to the stage of germ cell development at orchiopexy. Horm Res 68:46–52

    PubMed  Google Scholar 

  67. Rusnack SL, Wu HY, Huff DS, et al (2003) Testis histopathology in boys with cryptorchidism correlates with future fertility potential. J Urol 169:659–62

    PubMed  Google Scholar 

  68. Seguchi H, Hadziselimovic F (1974) Ultramikroskopische untersuchungen am tubulus seminiferous bei Kindern von der Geburt bis zur pubertat. I. Spermatogonientwicklung. Verh Anat Ges 68:133–7

    PubMed  Google Scholar 

  69. Paniagua R, Nistal M (1984) Morphological and histometric study of human spermatogenesis from birth to the onset of puberty. J Anat 139:535–52

    PubMed  PubMed Central  Google Scholar 

  70. Chemes HE (2001) Infancy is not a quiescent period of testicular development. Int J Androl 24:2–7

    PubMed  Google Scholar 

  71. Mengel W, Hienz HA, Sippe WG III, Hecker WC (1974) Studies on cryptorchidism: a comparison of histological findings in the germinative epithelium before and after the second year of life. J Ped Surg 9:445–50

    Google Scholar 

  72. Schindler AM, Diaz P, Cuendet A, Sizonenko PC (1987) Cryptorchidism: a morphological study of 670 biopsies. Helv Paed Acta 42:145–58

    Google Scholar 

  73. Thorup J, Cortes D, Nielsen OH (1993) Clinical and histopathologic evaluation of operated maldescended testes after luteinizing hormone-releasing hormone treatment. Pediatr Surg Int 8:419

    Google Scholar 

  74. Müller J, Skakkebaek NE (1984) Abnormal germ cells in maldescended testes: a study of cell density, nuclear size and deoxyribonucleic acid content in testicular biopsies from 50 boys. J Urol 131:730–3

    PubMed  Google Scholar 

  75. Cortes D, Thorup JM (1991) Histology of testicular biopsies taken at operation for bilateral maldescended testes in relation to fertility in adulthood. Br J Urol 68:285–91

    PubMed  Google Scholar 

  76. Cortes D, Thorup JM, Lindenberg S (1996) Fertility potential after unilateral orchiopexy: simultaneous testicular biopsy and orchiopexy in a cohort of 87 patients. J Urol 155:1061–5

    PubMed  Google Scholar 

  77. Tasian GE, Hittelman AB, Kim GE, et al (2009) Age at orchiopexy and testis palpability predict germ and Leydig cell loss: clinical predictors of adverse histological features for cryptorchidism. J Urol 182:704–9

    PubMed  Google Scholar 

  78. Virtanen HE, Rajpert-de Meyts E, Ritzen EM, et al (2007) Development and descent of the testis in relation to cryptorchidism. Acta Paediatrica 96:622–7

    PubMed  Google Scholar 

  79. Mieusset R, Fouda PJ, Vaysse P, et al (1993) Increase in testicular temperature in case of cryptorchidism in boys. Fertil Steril 59:1319–21

    PubMed  Google Scholar 

  80. Bergh A, Soder O (2007) Studies of cryptorchidism in experimental animal models. Acta Paediatrica 96:617–21

    PubMed  Google Scholar 

  81. Ofordeme KG, Aslan AR, Nazir TM, et al (2005) Apoptosis and proliferation in human undescended testes. BJU Int 96:634–8

    PubMed  Google Scholar 

  82. Setchell BP (1998) The Parkes lectures: heat and the testis. J Reprod Fertil 114:179–84

    PubMed  Google Scholar 

  83. Mieusset R, Bujan L, et al (1995) Clinical and biological characteristics of infertile men with a history of cryptorchidism. Hum Reprod 10:613–9

    PubMed  Google Scholar 

  84. Mieusset R, Bujan L (1995) Testicular heating and its possible contributions to male infertility: a review. Int J Androl 18:169–84

    PubMed  Google Scholar 

  85. Yalcin B, Komesli GH, Ozgok Y, Ozan H (2005) Vascular anatomy of normal and undescended testes: surgical assessment of anatomic channels between testicular and deferential arteries. Urology 66:854–7

    PubMed  Google Scholar 

  86. Brennan J, Karl J, Capel B (2002) Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev Biol 244:418–28

    PubMed  Google Scholar 

  87. Andersson AM, Petersen JH, Jorgensen N, et al (2004) Serum inhibin B and follicle-stimulating hormone levels as tools in the evaluation of fertile men: significance of adequate reference values from proven fertile men. J Clin Endocrinol Metab 89:2873–9

    PubMed  Google Scholar 

  88. Andersson AM, Jorgensen N, Frydelund-Larsen L, et al (2004) Impaired Leydig cells function in infertile men: a study of 357 idiopathic infertile men and 318 proven fertility controls. J Clin Endocrinol Metab 89:3161–7

    PubMed  Google Scholar 

  89. Lee PA, Coughlin MT (2002) Leydig cell function after cryptorchidism: evidence of the beneficial result of early surgery. J Urol 167:1824–7

    PubMed  Google Scholar 

  90. Giwercman A, Bruun E, Frimodt-Møller C, Skakkebaek NE (1989) Prevalence of carcinoma in situ and other histopathologic abnormalities in testes of men with a history of cryptorchidism. J Urol 142:998–1001

    PubMed  Google Scholar 

  91. Lipsultz LI, Caminos-Torres R, Greenspan CS, Snyder PJ (1976) Testicular function after orchiopexy for unilateral undescended testis. N Engl J Med 295:15–8

    Google Scholar 

  92. Puri P, Sparnon A (1990) Relationship of primary site of testis to final testicular size in cryptorchid patients. Br J Urol 66:208–10

    PubMed  Google Scholar 

  93. Yavetz H, Harash B, Paz G, et al (1992) Cryptorchidism: incidence and sperm quality in infertile men. Andrologia 24:2936–7

    Google Scholar 

  94. Taskinen S, Wikström S (1997) Effect of age at operation, location of testis and preoperative hormonal treatment on testicular growth after cryptorchidism. J Urol 158:471–3

    PubMed  Google Scholar 

  95. Cendron M, Huff DS, Keating MA, et al (1993) Anatomical, morphological and volumetric analysis: a review of 759 cases of testicular maldescent. J Urol 149:570–3

    PubMed  Google Scholar 

  96. Takihara H, Baba Y, Ishizu K, et al (1990) Testicular development following unilateral orchiopexy measured by a new orchidometer. Urology 36:370–2

    PubMed  Google Scholar 

  97. Lee PA, Coughlin MT, Bellinger MF (2000) Paternity and hormone levels after unilateral cryptorchidism: association with pretreatment testicular location. J Urol 164:1697–701

    PubMed  Google Scholar 

  98. Nistal M, Regadera J, Winitzky P, et al (2005) Granular changes in Sertoli cells in children and pubertal patients. Fertil Steril 83:1489–99

    PubMed  Google Scholar 

  99. Moretti E, Di Cairano G, Capitani S, et al (2007) Cryptorchidism and semen quality: a TEM and molecular study. J Androl 28:194–9

    PubMed  Google Scholar 

  100. De Miguel MP, Marino JM, Gonzalez-Peramato P, et al (2001) Epididymal growth and differentiation are altered in human cryptorchidism. J Androl 22:212–25

    PubMed  Google Scholar 

  101. De Palma L, Carter D, Weiss RM (1988) Epididymal and vas deferens immaturity in cryptorchidism. J Urol 140:1194–6

    Google Scholar 

  102. Nistal M, Jimenez-Hefferman JA (1997) Rete testis dysgenesis: a characteristic lesion of undescended testes. Arch Pathol Lab Med 121:1259–64

    PubMed  Google Scholar 

  103. Gilhooly PE, Meyers F, Lattimer JK (1984) Fertility prospects for children with cryptorchidism. AJDC 138:940–3

    PubMed  Google Scholar 

  104. Fallon B, Kennedy TJ (1985) Long-term follow-up of fertility in cryptorchid patients. Urology 24:502–4

    Google Scholar 

  105. Lee PA, Bellinger MF, Songer NJ, et al (1993) An epidemiological study of paternity after cryptorchidism: initial results. Eur J Pediatr 152(Suppl2):S25–S7

    PubMed  Google Scholar 

  106. Lee PA, O’Leary LA, Songer NJ, et al (1995) Paternity after cryptorchidism: lack of correlation with age at orchidopexy. Brit J Urol 75:704–7

    PubMed  Google Scholar 

  107. Lee PA, O’Leary LA, Songer NJ, et al (1996) Paternity after unilateral cryptorchidism: a controlled study. Pediatrics 98:676–9

    PubMed  Google Scholar 

  108. Lee PA, O’Leary LA, Songer NJ, et al (1997) Paternity after bilateral cryptorchidism. A controlled study. Arch Pediatr Adolesc Med 151:260–3

    PubMed  Google Scholar 

  109. Coughlin MT, O’Leary LA, Songer NJ, et al (1997) Time to conception after orchidopexy: evidence for subfertility? Fertil Steril 67:742–6

    PubMed  Google Scholar 

  110. Carizza C, Antiba A, Palazzi J, et al (1990) Testicular maldescent and infertility. Andrologia 22:285–8

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mieusset.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Mieusset, R. Anomalies postnatales du développement de la spermatogenèse associées aux troubles de la migration testiculaire. Basic Clin. Androl. 20, 179–189 (2010). https://doi.org/10.1007/s12610-010-0096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12610-010-0096-x

Mots clés

Keywords