- Revue
- Open access
- Published:
Transmission héréditaire de l’information épigénétique par le gamète mâle
Inheritance of epigenetic information through the male gamete
Basic and Clinical Andrology volume 19, pages 140–147 (2009)
Résumé
Comment est déterminé un phénotype ? Historiquement, on pensait que ce dernier résultait de l’information génétique reçue par les parents. Mais de nombreuses études ont révélé l’existence de modifications épigénétiques qui ne sont pas portées sur la séquence nucléotidique d’un gène, mais dont la présence est indispensable à l’expression normale d’un gène. Point important, ces modifications épigénétiques peuvent être héritées par les enfants, indiquant clairement que le gamète femelle mais aussi le gamète mâle contiennent des informations épigénétiques transmissibles à la descendance.
Abstract
What determines phenotype is one of the most fundamental questions in biology. Historically, most studies have focused on genetics but more recent studies have revealed the existence of epigenetic modifications that are not based on DNA sequencing but are essential for appropriate gene expression. Importantly, these epigenetic modifications can be inherited by the offspring. Thus, both male and female gametes contain inherited epigenetic information.
Références
Waddington C (1952) Titre de l’ouvrage ? Epigenetics of birds. Cambridge University Press, Cambridge
Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170
Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21
Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402
Goll MG, Kirpekar F, Maggert KA, et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398
Wolffe AP, Kurumizaka H (1998) The nucleosome: a powerful regulator of transcription. Prog Nucleic Acid Res Mol Biol 61:379–422
Gelato KA, Fischle W (2008) Role of histone modifications in defining chromatin structure and function. Biol Chem 389:353–363
Kubicek S, Jenuwein T (2004) A crack in histone lysine methylation. Cell 119:903–906
Agger K, Christensen J, Cloos PA, Helin K (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev 18:159–168
Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127:643–651
Govin J, Escoffier E, Rousseaux S, et al (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176:283–294
Hazzouri M, Pivot-Pajot C, Faure AK, et al (2000) Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79:950–960
Meistrich ML, Mohapatra B, Shirley CR, Zhao M (2003) Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111:483–488
Rousseaux S, Reynoird N, Escoffier E, et al (2008) Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online 16:492–503
Boussouar F, Rousseaux S, Khochbin S (2008) A new insight into male genome reprogramming by histone variants and histone code. Cell Cycle 7:3499–3502
Wolffe A (1995) Chromatin-structure and function. 2nd edition ed. Academic Press, London
Royo H, Cavaillé J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100:149–166
Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 Spec no 1:R17–R29
Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655
He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531
Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789
Ideraabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in mammals. Mutat Res 647:77–85
Bourc’his D, Xu GL, Lin CS, et al (2001) Dnmt3l and the establishment of maternal genomic imprints. Science 294:2536–2539
Kaneda M, Okano M, Hata K, et al (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903
Hirasawa R, Chiba H, Kaneda M, et al (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 22:1607–1616
Davis E, Caiment F, Tordoir X, et al (2005) RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 15:743–749
Seitz H, Youngson N, Lin SP, et al (2003) Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon- like gene. Nat Genet 34:261–262
Heard E (2004) Recent advances in X-chromosome inactivation. Curr Opin Cell Biol 16:247–255
Nesterova TB, Johnston CM, Appanah R, et al (2003) Skewing X chromosome choice by modulating sense transcription across the Xist locus. Genes Dev 17:2177–2190
Augui S, Filion GJ, Huart S, et al (2007) Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318:1632–1636
Grishok A (2005) RNAi mechanisms in Caenorhabditis elegans. FEBS Lett 579:5932–5939
Alcazar RM, Lin R, Fire AZ (2008) Transmission dynamics of heritable silencing Induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180(3):1275–1288
Grishok A, Sinskey JL, Sharp PA (2005) Transcriptional silencing of a transgene by RNAi in the soma of Caenorhabditis elegans. Genes Dev 19:683–696
Vastenhouw NL, Brunschwig K, Okihara KL, et al (2006) Gene expression: long-term gene silencing by RNAi. Nature 442:882
Chandler V, Alleman M (2008) Paramutation: epigenetic instructions passed across generations. Genetics 178:1839–1844
Alleman M, Sidorenko L, McGinnis K, et al (2006) An RNAdependent RNA polymerase is required for paramutation in maize. Nature 442:295–298
Rassoulzadegan M, Grandjean V, Gounon P, et al (2006) RNAmediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–474
Wagner KD, Wagner N, Ghanbarian H, et al (2008) RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 14:962–969
Gluckman PD, Hanson MA, Beedle AS (2007) Non-genomic transgenerational inheritance of disease risk. Bioessays 29:145–154
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Grandjean, V. Transmission héréditaire de l’information épigénétique par le gamète mâle. Basic Clin. Androl. 19, 140–147 (2009). https://doi.org/10.1007/s12610-009-0022-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12610-009-0022-2