Skip to main content

Transmission héréditaire de l’information épigénétique par le gamète mâle

Inheritance of epigenetic information through the male gamete

Résumé

Comment est déterminé un phénotype ? Historiquement, on pensait que ce dernier résultait de l’information génétique reçue par les parents. Mais de nombreuses études ont révélé l’existence de modifications épigénétiques qui ne sont pas portées sur la séquence nucléotidique d’un gène, mais dont la présence est indispensable à l’expression normale d’un gène. Point important, ces modifications épigénétiques peuvent être héritées par les enfants, indiquant clairement que le gamète femelle mais aussi le gamète mâle contiennent des informations épigénétiques transmissibles à la descendance.

Abstract

What determines phenotype is one of the most fundamental questions in biology. Historically, most studies have focused on genetics but more recent studies have revealed the existence of epigenetic modifications that are not based on DNA sequencing but are essential for appropriate gene expression. Importantly, these epigenetic modifications can be inherited by the offspring. Thus, both male and female gametes contain inherited epigenetic information.

Références

  1. Waddington C (1952) Titre de l’ouvrage ? Epigenetics of birds. Cambridge University Press, Cambridge

    Google Scholar 

  2. Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170

    Article  PubMed  CAS  Google Scholar 

  3. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  4. Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Article  PubMed  CAS  Google Scholar 

  5. Goll MG, Kirpekar F, Maggert KA, et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    Article  PubMed  CAS  Google Scholar 

  6. Wolffe AP, Kurumizaka H (1998) The nucleosome: a powerful regulator of transcription. Prog Nucleic Acid Res Mol Biol 61:379–422

    Article  PubMed  CAS  Google Scholar 

  7. Gelato KA, Fischle W (2008) Role of histone modifications in defining chromatin structure and function. Biol Chem 389:353–363

    Article  PubMed  CAS  Google Scholar 

  8. Kubicek S, Jenuwein T (2004) A crack in histone lysine methylation. Cell 119:903–906

    Article  PubMed  CAS  Google Scholar 

  9. Agger K, Christensen J, Cloos PA, Helin K (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev 18:159–168

    Article  PubMed  CAS  Google Scholar 

  10. Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127:643–651

    Article  PubMed  CAS  Google Scholar 

  11. Govin J, Escoffier E, Rousseaux S, et al (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176:283–294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Hazzouri M, Pivot-Pajot C, Faure AK, et al (2000) Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79:950–960

    Article  PubMed  CAS  Google Scholar 

  13. Meistrich ML, Mohapatra B, Shirley CR, Zhao M (2003) Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111:483–488

    Article  PubMed  Google Scholar 

  14. Rousseaux S, Reynoird N, Escoffier E, et al (2008) Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online 16:492–503

    Article  PubMed  CAS  Google Scholar 

  15. Boussouar F, Rousseaux S, Khochbin S (2008) A new insight into male genome reprogramming by histone variants and histone code. Cell Cycle 7:3499–3502

    Article  PubMed  CAS  Google Scholar 

  16. Wolffe A (1995) Chromatin-structure and function. 2nd edition ed. Academic Press, London

    Google Scholar 

  17. Royo H, Cavaillé J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100:149–166

    Article  PubMed  CAS  Google Scholar 

  18. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 Spec no 1:R17–R29

  19. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655

    Article  PubMed  CAS  Google Scholar 

  20. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  PubMed  CAS  Google Scholar 

  21. Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789

    Article  PubMed  CAS  Google Scholar 

  22. Ideraabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in mammals. Mutat Res 647:77–85

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Bourc’his D, Xu GL, Lin CS, et al (2001) Dnmt3l and the establishment of maternal genomic imprints. Science 294:2536–2539

    Article  PubMed  Google Scholar 

  24. Kaneda M, Okano M, Hata K, et al (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903

    Article  PubMed  CAS  Google Scholar 

  25. Hirasawa R, Chiba H, Kaneda M, et al (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 22:1607–1616

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Davis E, Caiment F, Tordoir X, et al (2005) RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 15:743–749

    Article  PubMed  CAS  Google Scholar 

  27. Seitz H, Youngson N, Lin SP, et al (2003) Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon- like gene. Nat Genet 34:261–262

    Article  PubMed  CAS  Google Scholar 

  28. Heard E (2004) Recent advances in X-chromosome inactivation. Curr Opin Cell Biol 16:247–255

    Article  PubMed  CAS  Google Scholar 

  29. Nesterova TB, Johnston CM, Appanah R, et al (2003) Skewing X chromosome choice by modulating sense transcription across the Xist locus. Genes Dev 17:2177–2190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Augui S, Filion GJ, Huart S, et al (2007) Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318:1632–1636

    Article  PubMed  CAS  Google Scholar 

  31. Grishok A (2005) RNAi mechanisms in Caenorhabditis elegans. FEBS Lett 579:5932–5939

    Article  PubMed  CAS  Google Scholar 

  32. Alcazar RM, Lin R, Fire AZ (2008) Transmission dynamics of heritable silencing Induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180(3):1275–1288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Grishok A, Sinskey JL, Sharp PA (2005) Transcriptional silencing of a transgene by RNAi in the soma of Caenorhabditis elegans. Genes Dev 19:683–696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Vastenhouw NL, Brunschwig K, Okihara KL, et al (2006) Gene expression: long-term gene silencing by RNAi. Nature 442:882

    Article  PubMed  CAS  Google Scholar 

  35. Chandler V, Alleman M (2008) Paramutation: epigenetic instructions passed across generations. Genetics 178:1839–1844

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Alleman M, Sidorenko L, McGinnis K, et al (2006) An RNAdependent RNA polymerase is required for paramutation in maize. Nature 442:295–298

    Article  PubMed  CAS  Google Scholar 

  37. Rassoulzadegan M, Grandjean V, Gounon P, et al (2006) RNAmediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–474

    Article  PubMed  CAS  Google Scholar 

  38. Wagner KD, Wagner N, Ghanbarian H, et al (2008) RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 14:962–969

    Article  PubMed  CAS  Google Scholar 

  39. Gluckman PD, Hanson MA, Beedle AS (2007) Non-genomic transgenerational inheritance of disease risk. Bioessays 29:145–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Grandjean.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Grandjean, V. Transmission héréditaire de l’information épigénétique par le gamète mâle. Basic Clin. Androl. 19, 140–147 (2009). https://doi.org/10.1007/s12610-009-0022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12610-009-0022-2

Mots clés

Keywords