Skip to main content

Une nouvelle fonction pour la transferrine exprimée par le testicule

A new function for transferrin expressed in testes

Résumé

Chez l’homme, les oligospermies sévères sont associées à un faible taux de transferrine dans le liquide séminal. La transferrine apparaît comme un bon indicateur pour définir les dysfonctionnements testiculaires. Son niveau d’expression dans le testicule doit être parfaitement contrôlé. Elle y joue un rôl dans le transport du fer. Mais de récents résultats montrent l’existence d’une forme dimérique de la transferrine sertolienne comme puissant régulateur de la phagocytose des corps résiduels par les cellules de Sertoli.

Abstract

In men, oligozoospermia corresponds with a low level of transferrin in semen. Transferrin appears to be a relevant indicator of gonadal function. Transferrin expression in normal testes is perfectly controlled. Transferrin contributes to iron transport. However, recent results show the existence of a dimeric form, which acts as a powerful regulator of phagocytosis of residual bodies by Sertoli cells. A disturbance of this new highlighted function may account for some forms of oligozoospermia.

Abbreviations

ACTH:

adreno corticotropic hormone; hormone corticotrope

AMPc:

cyclic adenosine monophosphate; adénosine monophosphate cyclique

AP1:

activating protein 1; protéine d’activation 1

Axl:

receptor tyrosine-kinase, which regulates the phagocytic function; same tyrosine-kinase subfamily as Mer and Tyro-3-Sky; récepteur tyrosine-kinase régulant la phagocytose, même famille que Tyro3 et Mer

CD36:

cluster of differentiation 36; cluster de différenciation 36

COUP-TF:

chicken ovalbumin upstream promoter transcription factor; facteurs de transcription du promoteur de l’ovalbumine de poulet

CREB:

cAMP response element-binding; élément de réponse à l’AMPc

DMT1:

divalent metal transporter 1; transporteur membranaire du fer

EGF:

epidermal growth factor; facteur de croissance des cellules de l’épiderme

FGF:

fibroblast growth factor; facteur de croissance des fibroblastes

FSH:

follicle-stimulating hormone; hormone folliculostimulante

Gas6:

growth arrest-specific gene 6; gène 6 spécifique de l’arrêt de croissance

GH:

growth hormone; hormone de croissance

IGF:

insulin-like growth factor; facteur de croissance à l’insuline

IGF-BP:

insulin-like growth factor-binding protein; protéine de liaison des IGF

IL:

interleukines

LH:

luteinizing hormone; hormone lutéinisante

Mer:

receptor tyrosine-kinase (Mertk, Nyk, c-Eyk), which regulate the phagocytic function; same tyrosine-kinase subfamily as Axl3 and Tyro-3-Sky; récepteur tyrosine-kinase (Mertk, Nyk, c-Eyk) régulant la phagocytose, même famille que Tyro3 et Axl

Nramp2:

natural resistance associated macrophage protein 2; protéine associée aux macrophages de type 2

PModS:

peritubular factor that modulates sertoli cell function; facteurs péritubulaires modulant les fonctions sertoliennes

PR:

proximale region; région proximale

P450scc:

P450 cholesterol side-chain cleavage; protéine de clivage de la chaîne latérale du cholestérol

SE1:

specific element 1; élément spécifique 1

SHBG:

sex hormone-binding globulin; protéine de liaison aux stéroïdes

SIE:

cis-inductible element; élément cis-inductible

SRB1:

class B 1 scavenger receptor; récepteur scavenger de classe B

SRE:

serum response element; élément de réponse au sérum

StAR:

steroidogenic acute regulatory protein; protéine de régulation de la stéroïdogenèse

TGF:

transforming growth factor; facteur de différenciation

TNFα:

tumor necrosis factor alpha; facteur de nécrose tumoral alpha

TSH:

thyroïd stimulating hormone; thyréostimuline

Tyro3-Sky:

receptor tyrosine-kinase, which regulates the phagocytic function, same tyrosine-kinase subfamily as Axl3 and Mer; récepteur tyrosine-kinase régulant la phagocytose, même famille que Mer et Axl

Références

  1. Skinner MK, Cosand WL, Griswold MD (1984) Purification and characterization of testicular transferrin secreted by rat Sertoli cells. Biochem J 218(2):313–320

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Fuse H, Okomura M, Kazama T, Katayama T (1994) Correlation of seminal plasma transferrin concentration and hypoosmotic swelling of the sperm. Arch Androl 32(2):95–100

    Article  PubMed  CAS  Google Scholar 

  3. Sueldo C, Marrs RP, Berger T, et al (1984) Correlation of semen transferrin concentration and sperm fertilizing capacity. Am J Obstet Gynecol 150:528–531

    Article  PubMed  CAS  Google Scholar 

  4. Barthelemy C, Khalfoun B, Guillaumin JM, et al (1988) Seminal fluid transferrin as an index of gonadal function in men. J Reprod Fertil 82(1):113–118

    Article  PubMed  CAS  Google Scholar 

  5. Ber A, Vardinon N, Yogev L, et al (1990) Transferrin in seminal plasma and in serum of men: its correlation with sperm quality and hormonal status. Hum Reprod 5(3):294–297

    PubMed  CAS  Google Scholar 

  6. Gilmont RR, Senger PL, Sylvester SR, Griswold MD (1990) Seminal transferrin and spermatogenic capability in bull. Biol Reprod 43(1):151–157

    Article  PubMed  CAS  Google Scholar 

  7. Bharshankar RN, Bharshankar JR (2000) Relationship of seminal plasma transferrin with seminal parameters in male infertility. Indian J Physiol Pharmacol 44(4):456–460

    PubMed  CAS  Google Scholar 

  8. Yoshida KI, Nakame Y, Uchijima Y (1988) Seminal plasma transferrin concentration in normozoospermic fertile men and oligozoospermic men associated with varicocele. Int J Fertil 33(6):432–436

    PubMed  CAS  Google Scholar 

  9. Hugly S, Griswold M (1987) Regulation of levels of specific Sertoli cell mRNAs by vitamin A. Dev Biol 121(2):316–324

    Article  PubMed  CAS  Google Scholar 

  10. Zalata A, Hafez T, Schoonjans F, Comhaire F (1996) The possible meaning of transferrin and its soluble receptors in seminal plasma as markers of the seminiferous epithelium. Hum Reprod 11(4):761–764

    Article  PubMed  CAS  Google Scholar 

  11. Bernstein SE (1987) Hereditary hypotransferrinemia with hemosiderosis, a murine disorder resembling human atransferrinemia. J Lab Clin Med 110(6):690–705

    PubMed  CAS  Google Scholar 

  12. Gorinski B, Horsburgh C, Lindsey PE, et al (1979) Evidence for the bilobal nature of differic rabbit plasma transferrin. Nature 281(5727):157–158

    Article  Google Scholar 

  13. Heaphy S, Williams J (1982) The preparation and partial characterization of N-terminal and C-terminal: iron-binding fragments from rabbit serum transferrin. Biochem J 205(3):611–617

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Aisen P, Leibman A, Zweier J (1978) Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253(6):1930–1937

    PubMed  CAS  Google Scholar 

  15. Morgan EH (1969) Factors affecting the synthesis of transferrin by rat tissue slices. J Biol Chem 244(15):4193–4199

    PubMed  CAS  Google Scholar 

  16. Meehan RR, Barlow DP, Hill RE, et al (1984) Pattern of serum protein gene expression in mouse visceral yolk sac and fetal liver. EMBO J 3(8):1881–1885

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Cassia R, Besnard L, Fiette L, et al (1997) Transferrin is an early marker of hepatic differentiation, and its expression correlates with the postnatal development of oligodendrocytes in mice. J Neurosci Res 50(3):421–432

    Article  PubMed  CAS  Google Scholar 

  18. Yeoh GC, Morgan EH (1974) Albumin and transferrin synthesis during development in the rat. Biochem J 144(2):215–224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Levin MJ, Tuil D, Uzan G, et al (1984) Expression of the transferrin gene during development of non-hepatic tissues: high-level of transferrin mRNA in fetal muscle and adult brain. Biochem Biophys Res Commun 122(1):212–217

    Article  PubMed  CAS  Google Scholar 

  20. Bloch B, Popovici T, Chouham S, et al (1987) Transferrin gene expression in choroid plexus of the adult rat brain. Brain Res Bull 18(4):573–576

    Article  PubMed  CAS  Google Scholar 

  21. Yefimova MG, Jeanny JC, Guillonneau X, et al (2000) Iron, ferritin, transferrin and transferrin receptor in the adult rat retina. Invest Ophtalmol Vis Sci 41(8):2343–2351

    CAS  Google Scholar 

  22. Lee EY, Barcellos-Hoff MH, Chen LH, et al (1987) Transferrin is a major mouse milk protein and is synthesized by mammary epithelial cells. In Vitro Cell Dev Biol 23(3):221–226

    Article  PubMed  CAS  Google Scholar 

  23. Huggenvik JI, Idzerda RL, Haywood L, et al (1987) Transferrin messenger ribonucleic acid molecular cloning and hormonal regulation in rat Sertoli cells. Endocrinology 120(1):332–340

    Article  PubMed  CAS  Google Scholar 

  24. Migrenne S, Racine C, Guillou F, Habert R (2003) Pituitary hormones inhibit the function and differentiation of fetal Sertoli cells. Endocrinology 144(6):2617–2622

    Article  PubMed  CAS  Google Scholar 

  25. Anthony CT, Rosselli M, Skinner MK (1991) Actions of the testicular paracrine factor (P-Mod-S) on Sertoli cell transferrin secretion throughout pubertal development. Endocrinology 129(1):353–360

    Article  PubMed  CAS  Google Scholar 

  26. Suire S, Fontaine I, Guillou F (1997) Transferrin gene expression and secretion in rat Sertoli cells. Mol Reprod Dev 48(2):168–175

    Article  PubMed  CAS  Google Scholar 

  27. Morales C, Hugly S, Griswold MD (1987) Stage-dependent levels of specific mRNA transcripts in Sertoli cells. Biol Reprod 36(4):1035–1046

    Article  PubMed  CAS  Google Scholar 

  28. Lecureuil C, Staub C, Fouchécourt S, et al (2007) Transferrin overexpression alters testicular function in aged mice. Mol Reprod Dev 74(2):197–206

    Article  PubMed  CAS  Google Scholar 

  29. Skinner MK, Griswold MD (1982) Secretion of testicular transferrin by cultured Sertoli cells is regulated by hormones and retinoids. Biol Reprod 27(1):211–221

    Article  PubMed  CAS  Google Scholar 

  30. Suire S, Fontaine I, Guillou F (1995) Follicle-stimulating hormone (FSH) stimulates transferrin gene transcription in rat Sertoli cells: cis and trans-acting elements involved in FSH action via cyclic adenosine 3′5′-monophosphate on the transferrin gene. Mol Endocrinol 9(6):756–766

    PubMed  CAS  Google Scholar 

  31. Foucault P, Carreau S, Kuczynski W, et al (1992) Human Sertoli cells in vitro. Lactate, estradiol-17 beta and transferrin production. J Androl 13(5):361–367

    PubMed  CAS  Google Scholar 

  32. Huleihel M, Zeyse D, Lunenfeld E, et al (2002) Induction of transferrin secretion in murine Sertoli cells by FSH and IL-1: the possibility of different mechanism(s) of regulation. Am J Reprod Immunol 47(2):112–117

    Article  PubMed  Google Scholar 

  33. Monet-Kuntz C, Guillou F, Fontaine I, Combarnous Y (1992) Purification of ovine transferrin and study of the hormonal control of its secretion in enriched cultures of ovine Sertoli cells. J Reprod Fertil 94(1):189–201

    Article  PubMed  CAS  Google Scholar 

  34. Suire S, Maurel MC, Guillou F (1996) Follitropin action on the transferrin gene in Sertoli cells is mediated by cAMP-responsive-element-binding-protein and antagonized by chicken ovalbumin-upstream-promoter-transcription factor. Eur J Biochem 239(1):52–60

    Article  PubMed  CAS  Google Scholar 

  35. Hugly S, Roberts K, Griswold MD (1988) Transferrin and sulphated glycoprotein-2 messenger ribonucleic acid levels in the testis and isolated Sertoli cells of hypophysectomized rats. Endocrinology 122(4):1390–1396

    Article  PubMed  CAS  Google Scholar 

  36. Itoh N, Nanbu A, Tachiki H, et al (1994) Restoration of testicular transferrin, insulin-like growth factor-1 (IGF-1), and spermatogenesis by exogenously administered purified FSH and testosterone in medically hypophysectomized rats. Arch Androl 33(3):169–177

    Article  PubMed  CAS  Google Scholar 

  37. Sigillo F, Guillou F, Fontaine I, et al (1999) In vitro regulation of rat Sertoli cell transferrin expression by tumor necrosis factor alpha and retinoic acid. Mol Cell Endocrinol 148(1–2):163–170

    Article  PubMed  CAS  Google Scholar 

  38. Holmes SD, Lipshultz LI, Smith RG (1984) Regulation of transferrin secretion by human Sertoli cells cultured in the presence or absence of human peritubular cells. J Clin Endocrinol Metab 59(6):1058–1062

    Article  PubMed  CAS  Google Scholar 

  39. Storch S, Kübler B, Höning S, et al (2001) Transferrin binds insulin-like growth factors and affects binding properties of insulin-like growth factor binding protein-3. FEBS Lett 509(3):395–398

    Article  PubMed  CAS  Google Scholar 

  40. Le Roy C, Lejeune H, Chuzel F, et al (1999) Autocrine regulation of Leydig cell differentiated functions by insulin-like growth factor I and transforming growth factor beta. J Steroid Biochem Mol Biol 69(1–6):379–384

    Article  PubMed  Google Scholar 

  41. Roberts KP, AWoniyi CA, Santulli R, Zirkin BR (1991) Regulation of Sertoli cell transferrin and sulphated glycoprotein-2 messenger ribonucleic acid levels during the restoration of spermatogenesis in the adult hypophysectomized rat. Endocrinology 129(6):3417–3423

    Article  PubMed  CAS  Google Scholar 

  42. Le Magueresse B, Pineau C, Guillou F, Jégou B (1988) Influence of germ cells upon transferrin secretion by rat Sertoli cells in vitro. J Endocrinol 118(3):R13–R16

    Article  PubMed  Google Scholar 

  43. Stallard BJ, Griswold MD (1990) Germ cell regulation of Sertoli cell transferrin mRNA levels. Mol Endocrinol 4(3):393–401

    Article  PubMed  CAS  Google Scholar 

  44. Norton JN, Skinner MK (1992) Regulation of Sertoli cell differentiation by the testicular paracrine factor PModS: potential role of immediate-early genes. Mol Endocrinol 6(12):2018–2026

    PubMed  CAS  Google Scholar 

  45. Whaley PD, Chaudhary J, Cupp A, Skinner MK (1995) Role of specific response elements of the c-fos promoter and involvement of intermediate transcription factor(s) in the induction of Sertoli cell differentiation (transferrin promoter activation) by the testicular paracrine factor PModS. Endocrinology 136(7):3046–3053

    PubMed  CAS  Google Scholar 

  46. De Winter JP, Vanderstichele HM, Verhoeven G, et al (1994) Peritubular myoid cells from immature rat testes secrete activin-A and express activin receptor type II in vitro. Endocrinology 135(2):759–767

    PubMed  Google Scholar 

  47. Onoda M, Suarez-Quian CA (1994) Modulation of transferrin secretion by epidermal growth factor in immature rat Sertoli cells in vitro. J Reprod Fertil 100(2):541–550

    Article  PubMed  CAS  Google Scholar 

  48. Hoeben E, Deboel L, Rombauts L, et al (1994) Different cells and cell lines produce factors that modulate Sertoli cell function. Mol Cell Endocrinol 101(1–2):263–275

    Article  PubMed  CAS  Google Scholar 

  49. Boockfor FR, Schwarz LK (1991) Effects of interleukin-6, interleukin-2, and tumor necrosis factor alpha on transferrin release from Sertoli cells in culture. Endocrinology 129(1):256–262

    Article  PubMed  CAS  Google Scholar 

  50. Hoeben E, Van Damme J, Put W, et al (1996) Cytokines derived from activated human mononuclear cells markedly stimulate transferrin secretion by cultured Sertoli cells. Endocrinology 137(2):514–521

    PubMed  CAS  Google Scholar 

  51. Holmes SD, Bucci LR, Lipshultz LI, Smith RG (1983) Transferrin binds specifically to pachytene spermatocytes. Endocrinology 113(5):1916–1918

    Article  PubMed  CAS  Google Scholar 

  52. Sylvester SR, Griswold MD (1984) Localization of transferrin and transferrin receptors in rat testes. Biol Reprod 31(1):195–203

    Article  PubMed  CAS  Google Scholar 

  53. Petrie RG Jr, Morales CR (1992) Receptor-mediated endocytosis of testicular transferrin by germinal cells of the rat testis. Cell Tissue Res 267(1):45–55

    Article  PubMed  CAS  Google Scholar 

  54. Wauben-Penris PJ, Strous GJ, van der Donk HA (1988) Kinetics of transferrin endocytosis and iron uptake by intact isolated rat seminiferous tubules and Sertoli cells in culture. Biol Reprod 38(4):853–861

    Article  PubMed  CAS  Google Scholar 

  55. Jabado N, Cannone-Hergaux F, Gruenheid S, et al (2002) Iron transporter Nramp2/DMT-1 is associated with the membrane of phagosomes in macrophages and Sertoli cells. Blood 100(7):2617–2622

    Article  PubMed  CAS  Google Scholar 

  56. Merker HJ, Vormann J, Günther T (1996) Iron-induced injury of rat testis. Andrologia 28(5):267–273

    Article  PubMed  CAS  Google Scholar 

  57. Idzerda RL, Huebers H, Finch CA, McKnight GS (1986) Rat transferrin gene expression: tissue-specific regulation by iron deficiency. Proc Natl Acad Sci USA 83(11):3723–3727

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Yefimova MG, Sow A, Fontaine I, et al (2008) Dimeric transferrin inhibits phagocytosis of residual bodies by testicular rat Sertoli cells. Biol Reprod 78(4):697–704

    Article  PubMed  CAS  Google Scholar 

  59. Fadok VA, Bratton DL, Frasch SC, et al (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5(7):551–562

    Article  PubMed  CAS  Google Scholar 

  60. Kawasaki Y, Nakagawa A, Nagaosa, et al (2002) Phosphatidylserine binding of class B scavenger receptor type I, a phagocytosis receptor of testicular Sertoli cells. J Biol Chem 277(30):27559–27566

    Article  PubMed  CAS  Google Scholar 

  61. Shiratsuchi A, Kawasaki Y, Ykemoto M, et al (1999) Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem 274(9):5901–5908

    Article  PubMed  CAS  Google Scholar 

  62. Gillot I, Jehl-Pietri C, Gounon P, et al (2005) Germ cells and fatty acids induce translocation of CD36 scavenger receptor to the plasma membrane of Sertoli cells. Cell Sci 118(14):3027–3035

    Article  CAS  Google Scholar 

  63. Wang H, Chen Y, Ge Y, et al (2005) Immunoexpression of Tyro 3 family receptors Tyro3, Axl and Mer, and their ligand Gas6 in postnatal developing mouse testis. J Histochem Cytochem 53(11):1355–1364

    Article  PubMed  CAS  Google Scholar 

  64. Nakano T, Ishimoto Y, Kishino J, et al (1997) Cell adhesion to phosphatidylserine mediated by a product of growth arrestspecific gene 6. J Biol Chem 272(47):29411–29414

    Article  PubMed  CAS  Google Scholar 

  65. Benzakour O, Gely A, Lara R, Coronas V (2007) Fonctions nouvelles de Gas6 et de la protéine S: facteurs vitamine K-dépendants et ligands des récepteurs tyrosine-kinase de la famille TAM. Med Sci (Paris) 23(10):826–833

    Article  Google Scholar 

  66. Scott RS, McMahon EJ, Pop SM, et al (2001) Phagocytosis and clearance of apoptotic cells is mediated by Mer. Nature 411(6834):207–211

    Article  PubMed  CAS  Google Scholar 

  67. Todt JC, Hu B, Curtis JL (2004) The receptor tyrosine-kinase Mertk activates phospholipase C-gamma2 during recognition of apoptotic thymocytes by murine macrophages. J Leukoc Biol 75(4):705–713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Sakamoto H, Sakamoto N, Oryu M, et al (1997) A novel function of transferrin as a constituent of macromolecular activators of phagocytosis from platelets and their precursors. Biochem Biophys Res Commun 230(2):270–274

    Article  PubMed  CAS  Google Scholar 

  69. Lu Q, Gore M, Zhang Q, et al (1999) Tyro3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398(6729):723–728

    Article  PubMed  CAS  Google Scholar 

  70. Kenis H, van Genderen H, Deckers NM, et al (2006) Annexin A5 inhibits engulfment through internalization of PS-expressing cell membrane patches. Exp Cell Res 312(6):719–726

    Article  PubMed  CAS  Google Scholar 

  71. Pineau C, Le Magueresse B, Courtens JL, Jégou B (1991) Study in vitro of the phagocytic function of Sertoli cells in the rat. Cell Tissue Res 264(3):589–598

    Article  PubMed  CAS  Google Scholar 

  72. Garza MM, Schwarz LK, Bonner JM, Boockfor FR (1991) Sertoli cell function varies along the seminiferous tubule: the proportion and response of transferrin secretors differ between stage-associated tubule segments. Endocrinology 128(4):1869–1874

    Article  PubMed  CAS  Google Scholar 

  73. Morales C, Hugly S, Griswold MD (1987) Stage-dependent levels of specific mRNA transcripts in Sertoli cells. Biol Reprod 36(4):1035–1046

    Article  PubMed  CAS  Google Scholar 

  74. Morales CR, Alcinar AA, Hecht NB, Griswold MD (1989) Specific mRNAs in Sertoli and germinal cells of testes from stage synchronized rats. Mol Endocrinol 3(4):725–733

    Article  PubMed  CAS  Google Scholar 

  75. Wright WW, Parviven M, Musto, et al (1983) Identification of stage-specific proteins synthesized by rat seminiferous tubules. Biol Reprod 29(1):257–270

    Article  PubMed  CAS  Google Scholar 

  76. Maeda Y, Shiratsuchi A, Namiki M, Nakanishi Y (2002) Inhibition of sperm production in mice by annexin V microinjected into seminiferous tubules: possible etiology of phagocytic clearance of apoptotic spermatogenic cells and male fertility. Cell Death Differ 9(7):742–749

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Betty Fumel a obtenu le Prix Master SALF 2008.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Fumel, B., Sow, A., Fouchécourt, S. et al. Une nouvelle fonction pour la transferrine exprimée par le testicule. Basic Clin. Androl. 19, 81–89 (2009). https://doi.org/10.1007/s12610-009-0013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12610-009-0013-3

Mots clés

Keywords