- Article Original
- Open access
- Published:
Anomalies génétiques et infertilité masculine
Genetic analysis of human male infertility
Andrologie volume 19, pages 2–16 (2009)
Résumé
Environ 15 % des couples sont confrontés à une infertilité. Dans la moitié des cas, la cause est masculine. Quatre-vingt-dix pour cent des causes d’infertilité chez l’homme ne sont toujours pas élucidées, certaines seraient dues à des causes génétiques ou environnementales ou les deux, impliquant alors des gènes de susceptibilité à caractériser. Les anomalies génétiques ont été recherchées par trois approches: 1) cytogénétique, surtout grace au progrès de la cytogénétique moléculaire et l’analyse directe des gamètes par la technique d’hybridation moléculaire in situ. La découverte d’une anomalie chromosomique, cause la plus fréquente des infertilités (y compris la délétion de l’Y), ne permet pas facilement de faire la distinction entre une anomalie génique impliquée dans le remaniement et une anomalie mécanique intrinsèque de la méiose; 2) l’analyse de gènes candidats utilise souvent les données obtenues dans les modèles animaux et principalement murins. Cette approche, très souvent utilisée dans la littérature, s’avère souvent longue, coûteuse et l’on découvre rarement une anomalie génique; c’est le cas par exemple des gènes de méiose; 3) l’approche mendélienne est évidemment l’approche de choix, en étudiant les cas familiaux d’infertilité qui sont plus fréquents que nous le pensons.
Abstract
Fifteen percent of couples are infertile and in about 50% of cases the cause is of male origin. The aetiology is still unknown in more than 90% of cases and there may be genetic or environmental causes. Three approaches are used to detect genetic causes for male infertility: 1) cytogenetics, resulting in particular from progress made in molecular cytogenetics and the direct analysis of gametes by in situ molecular hybridation techniques. When a chromosome anomaly, the most common cause of infertility, including deletion of the Y chromosome, is discovered, it is not easy to distinguish between gene anomalies resulting from change and mechanical anomalies that are an integral part of meiosis; 2) the analysis of candidate genes, which often uses data obtained from animal, usually murine, models. This approach, frequently described in the literature, tends to be lengthy, expensive and rarely results in the discovery of an abnormal gene, as is the case, for example, with meiotic genes; 3) Mendel’s approach is clearly the preferred choice, studying as it does cases of inherited infertility, which is much more widespread than we might think.
Références
Hassold T, Hall H, Hunt P (2007) The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet 16(Spec no 2):R203–R208
Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291
Simpson JL, De La Cruz F, Swerdloff RS, et al (2003) Klinefelter syndrome: expanding the phenotype and identifying new research directions. Genet Med 5:460–468
Guichaoua MR, Delafontaine D, Noël B, Luciani JM (1993) Infertilité masculine d’origine chromosomique. Contracept Fertil Sex 21:113–1121
Solari AJ (1999) Synaptonemal complex analysis in human male infertility. Eur J Histochem 43:265–276
Vogt PH, Falcao CL, Hanstein R, Zimmer J (2008) The AZF proteins. Int J Androl 31:383–394
Laron Z, Dickerman Z, Zamir R, Galatzer A (1982) Paternity in Klinefelter’s syndrome: a case report. Arch Androl 8:149–151
Mroz K, Hassold TJ, Hunt PA (1999) Meiotic aneuploidy in the XXY mouse: evidence that a compromised testicular environment increases the incidence of meiotic errors. Hum Reprod 14:1151–1156
Bouazzi H, Bailly M, Hammoud I, et al (2008) Vers une identification des mécanismes à l’origine des aneuploïdies spermatiques chez les patients azoospermes à caryotype normal. XXVe congrès de la SALF, Hammamet, Tunisie
Benet J, Oliver-Bonet M, Cifuentes P, et al (2005) Segregation of chromosomes in sperm of reciprocal translocation carriers: a review. Cytogenet Genome Res 111:281–290
Kékesi A, Erdei E, Trk M, et al (2007) Segregation of chromosomes in spermatozoa of four Hungarian translocation carriers. Fertil Steril 88(212): e5–e11
Nishikawa N, Sato T, Suzumori N, et al (2008) Meiotic segregation analysis in male translocation carriers by using fluorescent in situ hybridization. Int J Androl 31:60–66
Perrin A, Douet-Guilbert N, Laudier B, et al (2007) Meiotic segregation in spermatozoa of a 45,XY,-14,der(18)t(14;18)(q11; p11.3) translocation carrier: a case report. Hum Reprod 22:729–732
Wiland E, Midro AT, Panasiuk B, Kurpisz M (2007) The analysis of meiotic segregation patterns and aneuploidy in the spermatozoa of father and son with translocation t(4;5)(p15.1;p12) and the prediction of the individual probability rate for unbalanced progeny at birth. J Androl 28:262–272
Escudero T, Abdelhadi I, Sandalina M, Munné S (2003) Predictive value of sperm fluorescence in situ hybridization analysis on the outcome of preimplantation genetic diagnosis for translocations. Fertil Steril 79(Suppl 3):1528–1534
Baccetti B, Bruni E, Collodel G, et al (2003) 10, 15 reciprocal translocation in an infertile man: ultrastructural and fluorescence in situ hybridization sperm study: case report. Hum Reprod 18:2302–2308
Pujol A, Benet J, Staessen C, et al (2006) The importance of aneuploidy screening in reciprocal translocation carriers. Reproduction 131:1025–1035
Guttenbach M, Michelmann HW, Hinney B, et al (1997) Segregation of sex chromosomes into sperm nuclei in a man with 47,XXY Klinefelter’s karyotype: a FISH analysis. Hum Genet 99:474–477
Machev N, Gosset P, Warter S, et al (2005) Fluorescence in situ hybridization sperm analysis of six translocation carriers provides evidence of an interchromosomal effect. Fertil Steril 84:365–373
Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E (2004) Klinefelter’s syndrome. Lancet 364:273–283
Pellestor F, Imbert I, Andréo B, Lefort G (2001) Study of the occurrence of interchromosomal effect in spermatozoa of chromosomal rearrangement carriers by fluorescence in situ hybridization and primed in situ labelling techniques. Hum Reprod 16:1155–1164
Giltay JC, Kastrop P, Tiemessen CH, et al (1999) Sperm analysis in a subfertile male with a Y;16 translocation, using four-color FISH. Cytogenet Cell Genet 84:67–72
Mennicke K, Diercks P, Schlieker H, et al (1997) Molecular cytogenetic diagnostics in sperm. Int J Androl 20:11–19
Perrin A, Douet-Guilbert N, Le Bris MJ, et al (2008) Segregation of chromosomes in sperm of a t(X;18)(q11;p11.1) carrier inherited from his mother: case report. Hum Reprod 23:227–230
Vialard F, Guthauser B, Bailly M, et al (2005) Le risque chromosomique pour un patient porteur d’une translocation t(X;2) concerne non seulement la translocation, mais aussi la ségrégation XY. Andrologie 15:328–333
Ogur G, Van Assche E, Vegetti W, et al (2006) Chromosomal segregation in spermatozoa of 14 Robertsonian translocation carriers. Mol Hum Reprod 12:209–215
Roux C, Tripogney C, Morel F, et al (2005) Segregation of chromosomes in sperm of Robertsonian translocation carriers. Cytogenet Genome Res 111:291–296
Anton E, Blanco J, Egozcue J, Vidal F (2005) Sperm studies in heterozygote inversion carriers: a review. Cytogenet Genome Res 111:297–304
Morel F, Laudier B, Guérif F, et al (2007) Meiotic segregation analysis in spermatozoa of pericentric inversion carriers using fluorescence in situ hybridization. Hum Reprod 22:136–141
Bhatt S, Moradkhani K, Mrasek K, et al (2007) Breakpoint characterization: a new approach for segregation analysis of paracentric inversion in human sperm. Mol Hum Reprod 13:751–756
Vialard F, Delanete A, Clement P, et al (2007) Sperm chromosome analysis in two cases of paracentric inversion. Fertil Steril 87(418): e1–e5
Lefort G, Blanchet P, Belgrade N, et al (2002) Stable dicentric duplication: deficiency chromosome 14 resulting from crossingover within a maternal paracentric inversion. Am J Med Genet 113:333–338
Vergnaud G, Page DC, Simmler MC, et al (1986) A deletion map of the human Y chromosome based on DNA hybridization. Am J Hum Genet 38:109–124
Vollrath D, Foote S, Hilton A, et al (1992) The human Y chromosome: a 43-interval map based on naturally occurring deletions. Science 258:52–59
Pryor JL, Kent-First M, Muallem A, et al (1997) Microdeletions in the Y chromosome of infertile men. N Engl J Med 336:534–539
Reijo R, Alagappan RK, Patrizio P, Page DC (1996) Severe oligozoospermia resulting from deletions of azoospermia factor gene on Y chromosome. Lancet 347:1290–1293
Reijo R, Lee TY, Salo P, et al (1995) Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet 10:383–393
Tiepolo L, Zuffardi O (1976) Localization of factors controlling spermatogenesis in the non-fluorescent portion of the human Y chromosome long arm. Hum Genet 34:119–124
Krausz C, Giachini C (2007) Genetic risk factors in male infertility. Arch Androl 53:125–133
Mcelreavey K, Krausz C, Bishop CE (1999) The human Y chromosome and male infertility. In: McElreavey K (ed), The genetic basis of male infertility. Springer, Heidelberg, pp. 211
Chang PL, Sauer MV, Brown S (1999) Y chromosome microdeletion in a father and his four infertile sons. Hum Reprod 14:2689–2694
Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837
Krausz C, Degl’Innocenti S, Nuti F, et al (2006) Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male infertility. Hum Mol Gen 15:2673–2681
Sun C, Skaletsky H, Birren B, et al (1999) An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat Genet 23:429–432
Cooke HJ, Saunders PT (2002) Mouse models of male infertility. Nat Rev Genet 3:790–7801
Matzuk MM, Lamb DJ (2002) Genetic dissection mammalian infertility pathways. Nat Cell Biol 4:41–49
Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296:2181–2183
Miyamoto T, Hasuike S, Yogev L, et al (2003) Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362:1714–17149
Mandon-Pépin B, Touraine P, Kutten F, et al (2008) Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur J Endrocrinol 158:107–115
Westerveld GH, Korver CM, Van Pelt AM, et al (2006) Mutations in the testis-specific NALP14 gene in men suffering from spermatogenic failure. Hum Reprod 21:3178–184
Dam AH, Koscinski I, Kremer JA (2007) Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet 81:813–820
Avidan N, Tamary H, Dgany O (2003) CATSPER2, a human autosomal non-syndromic male infertility gene. Eur J Hum Genet 11:497–502
Zhang Y, Malekpour M, Al-Madani N, et al (2007) Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. J Med Genet 44:233–240
Zuccarello D, Ferlin A, Cazzadore C, et al (2008) Mutations in Dynein genes in patients affected by isolated non-syndromic asthenozoospermia. Hum Reprod 23:1957–1962
Devillard F, Metzler-Guillemain C, Pelletier R, et al (2002) Polyploidy in large-headed sperm: FISH study of three cases. Hum Reprod 17:1292–1298
Guthauser B, Vialard F, Dakouane M, et al (2006) Chromosomal analysis of spermatozoa with normal-sized heads in two infertile patients with macrocephalic sperm head syndrome. Fertil Steril 85(3): 750.e5–e7
Dieterich K, Soto Rifo R, Faure AK, et al (2007) Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet 39:661–665
Claustres M (2005) Molecular pathology of the CFTR locus in male infertility. Reprod Biomed Online 10:14–41
Weiske WH, Slzler N, Schroeder-Printzen I, Weidner W (2000) Clinical findings in congenital absence of the vasa deferentia. Andrologia 32:13–18
Gong XD, Li JC, Cheung KH, et al (2001) Expression of the cystic fibrosis transmembrane conductance regulator in rat spermatids: implication for the site of action of antispermatogenic agents. Mol Hum Reprod 7:705–713
Iguchi N, Yang S, Lamb DJ, Hecht NB (2006) An SNP in protamine 1: a possible genetic cause of male infertility? J Med Genet 43:382–384
Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12:417–435
Paduch DA, Mielnik A, Schlegel PN (2005) Novel mutations in testis-specific ubiquitin protease 26 gene may cause male infertility and hypogonadism. Reprod Biomed Online 10:747–754
Tanaka H, Miyagawa Y, Tsujimura A, et al (2003) Single nucleotide polymorphisms in the protamine-1 and -2 genes of fertile and infertile human male populations. Mol Hum Reprod 9:69–73
Miyagawa Y, Nishimura H, Tsujimura A, et al (2005) Singlenucleotide polymorphisms and mutation analyses of the TNP1 and TNP2 genes of fertile and infertile human male populations. J Androl 26:779–786
Christensen GL, Ivanov IP, Atkins JF, et al (2005) Screening the SPO11 and EIF5A2 genes in a population of infertile men. Fertil Steril 84:758–760
Sugiura-Ogasawara M, Suzumori K (2005) Can preimplantation genetic diagnosis improve success rates in recurrent aborters with translocations? Hum Reprod 20:3267–3270
Galan JJ, Guarducci E, Nuti F, et al (2007) Molecular analysis of estrogen receptor alpha gene AGATA haplotype and SNP12 in European populations: potential protective effect for cryptorchidism and lack of association with male infertility. Hum Reprod 22:444–449
Tronchon V, Vialard F, El Sirkasi M, et al (2008) Tumor necrosis factor-alpha -308 polymorphism in infertile men with altered sperm production or motility. Hum Reprod 23(12):2858–2866
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Vialard, F., Mandon-Pépin, B., Pellestor, F. et al. Anomalies génétiques et infertilité masculine. Basic Clin. Androl. 19, 2–16 (2009). https://doi.org/10.1007/s12610-008-0002-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12610-008-0002-y