Skip to main content

Anomalies génétiques et infertilité masculine

Genetic analysis of human male infertility

Résumé

Environ 15 % des couples sont confrontés à une infertilité. Dans la moitié des cas, la cause est masculine. Quatre-vingt-dix pour cent des causes d’infertilité chez l’homme ne sont toujours pas élucidées, certaines seraient dues à des causes génétiques ou environnementales ou les deux, impliquant alors des gènes de susceptibilité à caractériser. Les anomalies génétiques ont été recherchées par trois approches: 1) cytogénétique, surtout grace au progrès de la cytogénétique moléculaire et l’analyse directe des gamètes par la technique d’hybridation moléculaire in situ. La découverte d’une anomalie chromosomique, cause la plus fréquente des infertilités (y compris la délétion de l’Y), ne permet pas facilement de faire la distinction entre une anomalie génique impliquée dans le remaniement et une anomalie mécanique intrinsèque de la méiose; 2) l’analyse de gènes candidats utilise souvent les données obtenues dans les modèles animaux et principalement murins. Cette approche, très souvent utilisée dans la littérature, s’avère souvent longue, coûteuse et l’on découvre rarement une anomalie génique; c’est le cas par exemple des gènes de méiose; 3) l’approche mendélienne est évidemment l’approche de choix, en étudiant les cas familiaux d’infertilité qui sont plus fréquents que nous le pensons.

Abstract

Fifteen percent of couples are infertile and in about 50% of cases the cause is of male origin. The aetiology is still unknown in more than 90% of cases and there may be genetic or environmental causes. Three approaches are used to detect genetic causes for male infertility: 1) cytogenetics, resulting in particular from progress made in molecular cytogenetics and the direct analysis of gametes by in situ molecular hybridation techniques. When a chromosome anomaly, the most common cause of infertility, including deletion of the Y chromosome, is discovered, it is not easy to distinguish between gene anomalies resulting from change and mechanical anomalies that are an integral part of meiosis; 2) the analysis of candidate genes, which often uses data obtained from animal, usually murine, models. This approach, frequently described in the literature, tends to be lengthy, expensive and rarely results in the discovery of an abnormal gene, as is the case, for example, with meiotic genes; 3) Mendel’s approach is clearly the preferred choice, studying as it does cases of inherited infertility, which is much more widespread than we might think.

Références

  1. Hassold T, Hall H, Hunt P (2007) The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet 16(Spec no 2):R203–R208

    Article  PubMed  CAS  Google Scholar 

  2. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    Article  PubMed  CAS  Google Scholar 

  3. Simpson JL, De La Cruz F, Swerdloff RS, et al (2003) Klinefelter syndrome: expanding the phenotype and identifying new research directions. Genet Med 5:460–468

    Article  PubMed  Google Scholar 

  4. Guichaoua MR, Delafontaine D, Noël B, Luciani JM (1993) Infertilité masculine d’origine chromosomique. Contracept Fertil Sex 21:113–1121

    PubMed  CAS  Google Scholar 

  5. Solari AJ (1999) Synaptonemal complex analysis in human male infertility. Eur J Histochem 43:265–276

    PubMed  CAS  Google Scholar 

  6. Vogt PH, Falcao CL, Hanstein R, Zimmer J (2008) The AZF proteins. Int J Androl 31:383–394

    Article  PubMed  CAS  Google Scholar 

  7. Laron Z, Dickerman Z, Zamir R, Galatzer A (1982) Paternity in Klinefelter’s syndrome: a case report. Arch Androl 8:149–151

    Article  PubMed  CAS  Google Scholar 

  8. Mroz K, Hassold TJ, Hunt PA (1999) Meiotic aneuploidy in the XXY mouse: evidence that a compromised testicular environment increases the incidence of meiotic errors. Hum Reprod 14:1151–1156

    Article  PubMed  CAS  Google Scholar 

  9. Bouazzi H, Bailly M, Hammoud I, et al (2008) Vers une identification des mécanismes à l’origine des aneuploïdies spermatiques chez les patients azoospermes à caryotype normal. XXVe congrès de la SALF, Hammamet, Tunisie

  10. Benet J, Oliver-Bonet M, Cifuentes P, et al (2005) Segregation of chromosomes in sperm of reciprocal translocation carriers: a review. Cytogenet Genome Res 111:281–290

    Article  PubMed  CAS  Google Scholar 

  11. Kékesi A, Erdei E, Trk M, et al (2007) Segregation of chromosomes in spermatozoa of four Hungarian translocation carriers. Fertil Steril 88(212): e5–e11

    PubMed  Google Scholar 

  12. Nishikawa N, Sato T, Suzumori N, et al (2008) Meiotic segregation analysis in male translocation carriers by using fluorescent in situ hybridization. Int J Androl 31:60–66

    PubMed  CAS  Google Scholar 

  13. Perrin A, Douet-Guilbert N, Laudier B, et al (2007) Meiotic segregation in spermatozoa of a 45,XY,-14,der(18)t(14;18)(q11; p11.3) translocation carrier: a case report. Hum Reprod 22:729–732

    Article  PubMed  CAS  Google Scholar 

  14. Wiland E, Midro AT, Panasiuk B, Kurpisz M (2007) The analysis of meiotic segregation patterns and aneuploidy in the spermatozoa of father and son with translocation t(4;5)(p15.1;p12) and the prediction of the individual probability rate for unbalanced progeny at birth. J Androl 28:262–272

    Article  PubMed  Google Scholar 

  15. Escudero T, Abdelhadi I, Sandalina M, Munné S (2003) Predictive value of sperm fluorescence in situ hybridization analysis on the outcome of preimplantation genetic diagnosis for translocations. Fertil Steril 79(Suppl 3):1528–1534

    Article  PubMed  Google Scholar 

  16. Baccetti B, Bruni E, Collodel G, et al (2003) 10, 15 reciprocal translocation in an infertile man: ultrastructural and fluorescence in situ hybridization sperm study: case report. Hum Reprod 18:2302–2308

    Article  PubMed  CAS  Google Scholar 

  17. Pujol A, Benet J, Staessen C, et al (2006) The importance of aneuploidy screening in reciprocal translocation carriers. Reproduction 131:1025–1035

    Article  PubMed  CAS  Google Scholar 

  18. Guttenbach M, Michelmann HW, Hinney B, et al (1997) Segregation of sex chromosomes into sperm nuclei in a man with 47,XXY Klinefelter’s karyotype: a FISH analysis. Hum Genet 99:474–477

    Article  PubMed  CAS  Google Scholar 

  19. Machev N, Gosset P, Warter S, et al (2005) Fluorescence in situ hybridization sperm analysis of six translocation carriers provides evidence of an interchromosomal effect. Fertil Steril 84:365–373

    Article  PubMed  CAS  Google Scholar 

  20. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E (2004) Klinefelter’s syndrome. Lancet 364:273–283

    Article  PubMed  CAS  Google Scholar 

  21. Pellestor F, Imbert I, Andréo B, Lefort G (2001) Study of the occurrence of interchromosomal effect in spermatozoa of chromosomal rearrangement carriers by fluorescence in situ hybridization and primed in situ labelling techniques. Hum Reprod 16:1155–1164

    Article  PubMed  CAS  Google Scholar 

  22. Giltay JC, Kastrop P, Tiemessen CH, et al (1999) Sperm analysis in a subfertile male with a Y;16 translocation, using four-color FISH. Cytogenet Cell Genet 84:67–72

    Article  PubMed  CAS  Google Scholar 

  23. Mennicke K, Diercks P, Schlieker H, et al (1997) Molecular cytogenetic diagnostics in sperm. Int J Androl 20:11–19

    PubMed  Google Scholar 

  24. Perrin A, Douet-Guilbert N, Le Bris MJ, et al (2008) Segregation of chromosomes in sperm of a t(X;18)(q11;p11.1) carrier inherited from his mother: case report. Hum Reprod 23:227–230

    Article  PubMed  CAS  Google Scholar 

  25. Vialard F, Guthauser B, Bailly M, et al (2005) Le risque chromosomique pour un patient porteur d’une translocation t(X;2) concerne non seulement la translocation, mais aussi la ségrégation XY. Andrologie 15:328–333

    Article  Google Scholar 

  26. Ogur G, Van Assche E, Vegetti W, et al (2006) Chromosomal segregation in spermatozoa of 14 Robertsonian translocation carriers. Mol Hum Reprod 12:209–215

    Article  PubMed  CAS  Google Scholar 

  27. Roux C, Tripogney C, Morel F, et al (2005) Segregation of chromosomes in sperm of Robertsonian translocation carriers. Cytogenet Genome Res 111:291–296

    Article  PubMed  CAS  Google Scholar 

  28. Anton E, Blanco J, Egozcue J, Vidal F (2005) Sperm studies in heterozygote inversion carriers: a review. Cytogenet Genome Res 111:297–304

    Article  PubMed  CAS  Google Scholar 

  29. Morel F, Laudier B, Guérif F, et al (2007) Meiotic segregation analysis in spermatozoa of pericentric inversion carriers using fluorescence in situ hybridization. Hum Reprod 22:136–141

    Article  PubMed  CAS  Google Scholar 

  30. Bhatt S, Moradkhani K, Mrasek K, et al (2007) Breakpoint characterization: a new approach for segregation analysis of paracentric inversion in human sperm. Mol Hum Reprod 13:751–756

    Article  PubMed  CAS  Google Scholar 

  31. Vialard F, Delanete A, Clement P, et al (2007) Sperm chromosome analysis in two cases of paracentric inversion. Fertil Steril 87(418): e1–e5

    PubMed  Google Scholar 

  32. Lefort G, Blanchet P, Belgrade N, et al (2002) Stable dicentric duplication: deficiency chromosome 14 resulting from crossingover within a maternal paracentric inversion. Am J Med Genet 113:333–338

    Article  PubMed  Google Scholar 

  33. Vergnaud G, Page DC, Simmler MC, et al (1986) A deletion map of the human Y chromosome based on DNA hybridization. Am J Hum Genet 38:109–124

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Vollrath D, Foote S, Hilton A, et al (1992) The human Y chromosome: a 43-interval map based on naturally occurring deletions. Science 258:52–59

    Article  PubMed  CAS  Google Scholar 

  35. Pryor JL, Kent-First M, Muallem A, et al (1997) Microdeletions in the Y chromosome of infertile men. N Engl J Med 336:534–539

    Article  PubMed  CAS  Google Scholar 

  36. Reijo R, Alagappan RK, Patrizio P, Page DC (1996) Severe oligozoospermia resulting from deletions of azoospermia factor gene on Y chromosome. Lancet 347:1290–1293

    Article  PubMed  CAS  Google Scholar 

  37. Reijo R, Lee TY, Salo P, et al (1995) Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet 10:383–393

    Article  PubMed  CAS  Google Scholar 

  38. Tiepolo L, Zuffardi O (1976) Localization of factors controlling spermatogenesis in the non-fluorescent portion of the human Y chromosome long arm. Hum Genet 34:119–124

    Article  PubMed  CAS  Google Scholar 

  39. Krausz C, Giachini C (2007) Genetic risk factors in male infertility. Arch Androl 53:125–133

    Article  PubMed  CAS  Google Scholar 

  40. Mcelreavey K, Krausz C, Bishop CE (1999) The human Y chromosome and male infertility. In: McElreavey K (ed), The genetic basis of male infertility. Springer, Heidelberg, pp. 211

    Google Scholar 

  41. Chang PL, Sauer MV, Brown S (1999) Y chromosome microdeletion in a father and his four infertile sons. Hum Reprod 14:2689–2694

    Article  PubMed  CAS  Google Scholar 

  42. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837

    Article  PubMed  CAS  Google Scholar 

  43. Krausz C, Degl’Innocenti S, Nuti F, et al (2006) Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male infertility. Hum Mol Gen 15:2673–2681

    Article  PubMed  CAS  Google Scholar 

  44. Sun C, Skaletsky H, Birren B, et al (1999) An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat Genet 23:429–432

    Article  PubMed  CAS  Google Scholar 

  45. Cooke HJ, Saunders PT (2002) Mouse models of male infertility. Nat Rev Genet 3:790–7801

    Article  PubMed  CAS  Google Scholar 

  46. Matzuk MM, Lamb DJ (2002) Genetic dissection mammalian infertility pathways. Nat Cell Biol 4:41–49

    Article  Google Scholar 

  47. Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296:2181–2183

    Article  PubMed  CAS  Google Scholar 

  48. Miyamoto T, Hasuike S, Yogev L, et al (2003) Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362:1714–17149

    Article  PubMed  CAS  Google Scholar 

  49. Mandon-Pépin B, Touraine P, Kutten F, et al (2008) Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur J Endrocrinol 158:107–115

    Article  Google Scholar 

  50. Westerveld GH, Korver CM, Van Pelt AM, et al (2006) Mutations in the testis-specific NALP14 gene in men suffering from spermatogenic failure. Hum Reprod 21:3178–184

    Article  PubMed  CAS  Google Scholar 

  51. Dam AH, Koscinski I, Kremer JA (2007) Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet 81:813–820

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Avidan N, Tamary H, Dgany O (2003) CATSPER2, a human autosomal non-syndromic male infertility gene. Eur J Hum Genet 11:497–502

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Y, Malekpour M, Al-Madani N, et al (2007) Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. J Med Genet 44:233–240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Zuccarello D, Ferlin A, Cazzadore C, et al (2008) Mutations in Dynein genes in patients affected by isolated non-syndromic asthenozoospermia. Hum Reprod 23:1957–1962

    Article  PubMed  CAS  Google Scholar 

  55. Devillard F, Metzler-Guillemain C, Pelletier R, et al (2002) Polyploidy in large-headed sperm: FISH study of three cases. Hum Reprod 17:1292–1298

    Article  PubMed  CAS  Google Scholar 

  56. Guthauser B, Vialard F, Dakouane M, et al (2006) Chromosomal analysis of spermatozoa with normal-sized heads in two infertile patients with macrocephalic sperm head syndrome. Fertil Steril 85(3): 750.e5–e7

    Article  Google Scholar 

  57. Dieterich K, Soto Rifo R, Faure AK, et al (2007) Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet 39:661–665

    Article  PubMed  CAS  Google Scholar 

  58. Claustres M (2005) Molecular pathology of the CFTR locus in male infertility. Reprod Biomed Online 10:14–41

    Article  PubMed  CAS  Google Scholar 

  59. Weiske WH, Slzler N, Schroeder-Printzen I, Weidner W (2000) Clinical findings in congenital absence of the vasa deferentia. Andrologia 32:13–18

    Article  PubMed  CAS  Google Scholar 

  60. Gong XD, Li JC, Cheung KH, et al (2001) Expression of the cystic fibrosis transmembrane conductance regulator in rat spermatids: implication for the site of action of antispermatogenic agents. Mol Hum Reprod 7:705–713

    Article  PubMed  CAS  Google Scholar 

  61. Iguchi N, Yang S, Lamb DJ, Hecht NB (2006) An SNP in protamine 1: a possible genetic cause of male infertility? J Med Genet 43:382–384

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12:417–435

    Article  PubMed  CAS  Google Scholar 

  63. Paduch DA, Mielnik A, Schlegel PN (2005) Novel mutations in testis-specific ubiquitin protease 26 gene may cause male infertility and hypogonadism. Reprod Biomed Online 10:747–754

    Article  PubMed  Google Scholar 

  64. Tanaka H, Miyagawa Y, Tsujimura A, et al (2003) Single nucleotide polymorphisms in the protamine-1 and -2 genes of fertile and infertile human male populations. Mol Hum Reprod 9:69–73

    Article  PubMed  CAS  Google Scholar 

  65. Miyagawa Y, Nishimura H, Tsujimura A, et al (2005) Singlenucleotide polymorphisms and mutation analyses of the TNP1 and TNP2 genes of fertile and infertile human male populations. J Androl 26:779–786

    Article  PubMed  CAS  Google Scholar 

  66. Christensen GL, Ivanov IP, Atkins JF, et al (2005) Screening the SPO11 and EIF5A2 genes in a population of infertile men. Fertil Steril 84:758–760

    Article  PubMed  CAS  Google Scholar 

  67. Sugiura-Ogasawara M, Suzumori K (2005) Can preimplantation genetic diagnosis improve success rates in recurrent aborters with translocations? Hum Reprod 20:3267–3270

    Article  PubMed  Google Scholar 

  68. Galan JJ, Guarducci E, Nuti F, et al (2007) Molecular analysis of estrogen receptor alpha gene AGATA haplotype and SNP12 in European populations: potential protective effect for cryptorchidism and lack of association with male infertility. Hum Reprod 22:444–449

    Article  PubMed  CAS  Google Scholar 

  69. Tronchon V, Vialard F, El Sirkasi M, et al (2008) Tumor necrosis factor-alpha -308 polymorphism in infertile men with altered sperm production or motility. Hum Reprod 23(12):2858–2866

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fellous.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Vialard, F., Mandon-Pépin, B., Pellestor, F. et al. Anomalies génétiques et infertilité masculine. Basic Clin. Androl. 19, 2–16 (2009). https://doi.org/10.1007/s12610-008-0002-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12610-008-0002-y

Mots clés

Keywords