Skip to main content

Advertisement

Intérêt de l’étude de l’oxydation de l’ADN des spermatozoïdes par marquage de la 8-oxo-guanine en cytométrie en flux chez l’homme infertile

Detection of oxidative DNA damage by flow cytometry and its association with male infertility

Article metrics

  • 407 Accesses

Résumé

Dans le sperme, le stress oxydatif est essentiellement du à une production excessive de dérivés actifs de l’oxygène (DAO) d’origine essentiellement leucocytaire. L’oxydation de l’ADN estdue à l’action directe des DAO qui produisent en conséquence plusieurs adduits dont le plus étudié est la 8-oxo-guanine. L’intégrité de l’ADN est essentielle pour la fécondance du spermatozoïde et elle constitue de nos jours un sujet d’intérêt pour les chercheurs et cliniciens dans le monde. Si les moyens d’évaluation de l’intégrité globale de l’ADN spermatique se sont bien développés ces dernières années, les tests d’évaluation du dommage de l’ADN d’origine oxydative sont peu documentés.

L’objectif de ce travail est de faire le point sur les différents tests d’étude de l’intégrité de l’ADN spermatique couramment utilisés selon la littérature, et de présenter les résultats de notre étude sur l’oxydation de l’ADN par marquage de la 8-oxo-guanine en cytométrie en flux chez l’homme infertile.

Notre travail a porté sur 15 échantillons de sperme qui ont fait l’objet d’une analyse spermiologique selon les recommandations de l’OMS, avec une mesure de la concentration des leucocytes par la méthode cytochimique révélant la Peroxydase dans les granulations cytoplasmiques. L’étude de l’oxydation de l’ADN a été réalisée grâce à un kit de marquage de la 8-oxo-guanine en cytométrie en flux.

Nous avons montré par l’étude de la régression linéaire une forte corrélation entre l’oxydation de l’ADN et le taux de leucocytes dans le sperme (p=0,006, ß=0,7). Un seuil de leucocytes de 250 000/ml de sperme était associé à une augmentation significative de l’oxydation de l’ADN (p=0,03).

Nous concluons que la 8-oxo-guanine pourrait être considérée comme un biomarqueur de l’action directe du stress oxydatif sur l’ADN spermatique qui semble être vulnérable à des taux relativement faibles de DAO produits par des leucocytes présents à une concentration largement inférieure au seuil de la leucospermie défini par l’OMS.

Abstract

Oxidative stress in semen is essentially due to excessive production of oxygen-reactive species (ORS) essentially derived from leukocytes. DNA oxidation is due to the direct action of ORS which produce several adducts the most extensively studied of which is 8-oxo-guanine. Integrity of DNA is essential for the fertility of sperm and is an important subject of research for scientists and clinicians all over the world. Although evaluation of the global integrity of sperm DNA has considerably developed over recent years, few tests are available to document oxidative DNA damage.

This study was designed to review the various tests of sperm DNA integrity commonly used in the literature and to present the results of our study on DNA oxidation with 8-oxo-guanine labelling by flow cytometry in infertile men.

This study was based on 15 semen samples that were submitted to sperm analysis according to WHO guidelines, with determination of the leukocyte concentration by a cytochemical method revealing peroxidase in cytoplasmic granulations. The DNA oxidation study was performed with 8-oxo-guanine labelling by flow cytometry.

Linear regression analysis showed a strong correlation between DNA oxidation and leukocyte count in the semen (p = 0.006, r = 0.7). A leukocyte cut-off of 250,000/ml of semen was associated with a significant increase of DNA oxidation (p = 0.03).

8-oxo-guanine can therefore be considered to be a biological marker of the direct action of oxidative stress on sperm DNA which appears to be susceptible to relatively low levels of ORS produced by leukocytes present at concentrations well below the limit of leukospermia defined by WHO.

References

  1. 1.

    AGARWAL A., MAKKER K., SHARMA R.: Clinical relevance of oxidative stress in male factor infertility: an update. Am. J. Reprod. Immunol., 2008, 1: 2–11.

  2. 2.

    AHMADI A., NG S.C.: Fertilizing ability of DNA-damaged spermatozoa. J. Exp. Zool., 1999, 4: 696–704.

  3. 3.

    AITKEN R.J., BUCKINGHAM D.W., BRINDLE J., GOMEZ E., BAKER H.W., IRVINE D.S.: Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum. Reprod., 1995, 8: 2061–2071.

  4. 4.

    AOKI V.W., EMERY B.R., LIU L., CARRELL D.T.: Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J. Androl., 2006, 6: 890–898.

  5. 5.

    AUGER J., EUSTACHE F.: Standardisation de la classification morphologique des spermatozoïdes humains selon la méthode de David modifiée. Andrologie, 2000, 10: 358–373.

  6. 6.

    BADOUARD C., MENEZO Y., PANTEIX G. et al.: Determination of new types of DNA lesions in human sperm. Zygote, 2008,1: 9–13.

  7. 7.

    CARRELL D.T., LIU L., PETERSON C.M. et al.: Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch. Androl., 2003, 1: 49–55.

  8. 8.

    CHO C., JUNG-HA H., WILLIS W.D. et al.: Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol. Reprod., 2003, 1: 211–217.

  9. 9.

    DE LAMIRANDE E., O’FLAHERTY C.: Sperm activation: role of reactive oxygen species and kinases. Biochim. Biophys. Acta, 2008, 1: 106–115.

  10. 10.

    DOMÍNGUEZ-FANDOS D., CAMEJO M.I., BALLESCÀ J.L., OLIVA R.: Human sperm DNA fragmentation: correlation of TUNEL results as assessed by flow cytometry and optical microscopy. Cytometry A, 2007, 12: 1011–1018.

  11. 11.

    ERENPREISS J., HLEVICKA S., ZALKALNS J., ERENPREISA J.: Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples. J. Androl., 2002, 5: 717–723.

  12. 12.

    ESTERHUIZEN A.D., FRANKEN D.R., LOURENS J.G., PRINSLOO E., VAN ROOYEN L.H.: Sperm chromatin packaging as an indicator of in-vitro fertilization rates. Hum. Reprod., 2000, 3: 657–661.

  13. 13.

    EVENSON D.P., DARZYNKIEWICZ Z., MELAMED M.R.: Relation of mammalian sperm chromatin heterogeneity to fertility. Science, 1980, 210: 1131–1133.

  14. 14.

    EVENSON D.P., JOST L.K., CORZETT M., BALHORN R.: Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J. Androl., 2000, 5: 739–746.

  15. 15.

    FATEHI A.N., BEVERS M.M., SCHOEVERS E., ROELEN J., COLENBRANDER B., GADELLA B.M.: DNA damage in bovine sperm cells does not block fertilization but induces apoptosis after the first cleavages. J. Androl., 2006, 2: 176–188.

  16. 16.

    FRAGA C.G., MOTCHNIK P.A., WYROBEK A.J., REMPEL D.M., AMES B.N.: Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat. Res., 1996, 2: 199–203.

  17. 17.

    FRANKEN D.R., FRANKEN C.J., DE LA GUERRE H., DE VILLIERS A.: Normal sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining. Andrologia, 1999, 6: 361–366.

  18. 18.

    GDOURA R., KCHAOU W., AMMAR-KESKES L. et al.: Assessment of Chlamydia trachomatis, Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis, and Mycoplasma genitalium in semen and first void urine specimens of asymptomatic male partners of infertile couples. J. Androl., 2008, 2: 198–206.

  19. 19.

    GOMEZ E., BUCKINGHAM D.W., BRINDLE J., LANZAFAME F., IRVINE D.S., AITKEN R.J.: Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J. Androl., 1996, 3: 276–287.

  20. 20.

    GORCZYCA W., TRAGANOS F., JESIONOWSKA H., DARZYNKIEWICZ Z.: Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp. Cell Res., 1993, 1: 202–205.

  21. 21.

    GUERIN J.F., BENCHAÏB M.: Assays for assessment of sperm DNA integrity: relationships with fertility and conceptus quality. Gynecol. Obstet. Fertil., 2004, 9: 799–802.

  22. 22.

    HALLIWELL B., ARUOMA O.I.: DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett., 1991, 281: 9–19.

  23. 23.

    IRVINE D.S., TWIGG J.P., GORDON E.L., FULTON N., MILNE P.A., AITKEN R.J.: DNA integrity in human spermatozoa: relationships with semen quality. J. Androl., 2000, 1: 33–44.

  24. 24.

    LOFT S., KOLD-JENSEN T., HJOLLUND N.H. et al.: Oxidative DNA damage in human sperm influences time to pregnancy. Hum. Reprod., 2003, 6: 1265–1272.

  25. 25.

    MCKELVEY-MARTIN V.J., MELIAN, WALSH I.K. et al.: Two potential clinical applications of the alkaline single-cell gel electrophoresis assay: (1) Human bladder washings and transitional cell carcinoma of the bladder; and (2) Human sperm and male infertility. Mutat. Res., 1997, 2: 93–104.

  26. 26.

    MCPHERSON S., LONGO F.J.: Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur. J. Histochem., 1993, 2: 109–128.

  27. 27.

    MESEGUER M., MARTÍNEZ-CONEJERO J.A., O’CONNOR J.E., PELLICER A., REMOHÍ J., GARRIDO N.: The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil. Steril., 2008, 5: 1191–1199.

  28. 28.

    MOSKOVTSEV S.I., WILLIS J., WHITE J., MULLEN J.B.: Leukocytospermia: relationship to sperm deoxyribonucleic acid integrity in patients evaluated for male factor infertility. Fertil. Steril., 2007, 3: 737–740.

  29. 29.

    OGER I., DA CRUZ C., PANTEIX G., MENEZO Y.: Evaluating human sperm DNA integrity: relationship between 8-hydroxydeoxyguanosine quantification and the sperm chromatin structure assay. Zygote, 2003, 4: 367–371.

  30. 30.

    POTTS R.J., NEWBURY C.J., SMITH G., NOTARIANNI L.J., JEFFERIES T.M.: Sperm chromatin damage associated with male smoking. Mutat. Res., 1999, 423: 103–111.

  31. 31.

    PUNAB M., LÕIVUKENE K., KERMES K., MÄNDA R.: The limit of leucocytospermia from the microbiological viewpoint. Andrologia, 2003, 5: 271–278.

  32. 32.

    RUBES J., SELEVAN S.G., EVENSON D.P. et al.: Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum. Reprod., 2005, 10: 2776–2783.

  33. 33.

    SAKKAS D., SELI E., BIZZARO D., TAROZZI N., MANICARDI G.C.: Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod. Biomed. Online, 2003, 4: 428–432.

  34. 34.

    SALEH R.A., AGARWAL A., SHARMA R.K., SAID T.M., SIKKA S.C., THOMAS A.J.: Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil. Steril., 2003, 6: 1431–1436.

  35. 35.

    SÁNCHEZ-PEÑA L.C., REYES B.E., LÓPEZ-CARRILLO L. et al.: Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol. Appl. Pharmacol., 2004, 1: 108–113.

  36. 36.

    SHEN H., ONG C.: Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radic. Biol. Med., 2000, 4: 529–536.

  37. 37.

    SINGH N.P., MCCOY M.T., TICE R.R., SCHNEIDER E.L.: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 1: 184–191.

  38. 38.

    SPANÒ M., BONDE J.P., HJOLLUND H.I., KOLSTAD H.A., CORDELLI E., LETER G.: Sperm chromatin damage impairs human fertility: The Danish First Pregnancy Planner Study Team. Fertil. Steril., 2000, 1: 43–50.

  39. 39.

    WILLIAMS A.C, FORD W.C.: Relationship between reactive oxygen species production and lipid peroxidation in human sperm suspensions and their association with sperm function. Fertil. Steril., 2005, 4: 929–936.

  40. 40.

    WORLD HEALTH ORGANIZATION: Laboratory Manual for the Examination of Human Semen and Sperm-cervical Mucus Interaction. Cambridge, Cambridge University Press, 9th ed., 1999.

  41. 41.

    ZHANG X., SAN GABRIEL M., ZINI A.: Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J. Androl., 2006, 3: 414–420.

  42. 42.

    ZINI A., BIELECKI R., PHANG D., ZENZES M.T.: Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil. Steril., 2001, 4: 674–677.

  43. 43.

    ZINI A., BLUMENFELD A., LIBMAN J., WILLIS J.: Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum. Reprod., 2005, 4: 1018–1021.

  44. 44.

    ZINI A., DEFREITAS G., FREEMAN M., HECHTER S., JARVI K.: Varicocele is associated with abnormal retention of cytoplasmic droplets by human spermatozoa. Fertil. Steril., 2000, 3: 461–464.

  45. 45.

    ZINI A., FISCHER M.A., SHARIR S., SHAYEGAN B., PHANG D., JARVI K.: Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology, 2002, 6: 1069–1072.

  46. 46.

    ZINI A., LIBMAN J.: Sperm DNA damage: clinical significance in the era of assisted reproduction. C.M.A.J., 2006, 5: 495–500.

Download references

Author information

Correspondence to Nozha Chakroun Feki or Nassira Zribi or Henda Eleuch or Radouane Gdoura or Afifa Sellami or Ali Bahloul or Adnene Hammami or Jalel Gargouri or Tarek Rebai or Leila Keskes Ammar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chakroun Feki, N., Zribi, N., Eleuch, H. et al. Intérêt de l’étude de l’oxydation de l’ADN des spermatozoïdes par marquage de la 8-oxo-guanine en cytométrie en flux chez l’homme infertile. Androl. 18, 197–205 (2008) doi:10.1007/BF03040755

Download citation

Mots clés

  • leucospermie
  • stress oxydatif
  • dommage de l’ADN
  • 8-oxo-guanine
  • spermatozoïde
  • infertilité

Key words

  • DNA oxidative damage
  • leukocyte
  • 8-oxo-guanine
  • sperm
  • oxidative stress
  • infertility