Skip to main content

Advertisement

Analyse de la structure chromatinienne du sperme par la cytométrie en flux à l’acridine orange. — intérêt clinique

Assessment of sperm chromatin structure using flow cytometry with acridine orange staining. Clinical interest

Résumé

L’ADN nucléosomal du spermatozoïde, lié à des histones, se transforme durant la spermatogénèse en une forme spéciale liée à des protéines basique, les protamines. Ce processus permet au noyau du spermatozoïde de se condenser pour devenir mature. Cette maturation s’achève dans l’épididyme. Lorsque le spermatozoïde pénètre dans l’ovocyte, les protamines se détachent pour être remplacées par des histones et le noyau peut se déployer pour former le pronucléus mâle. La cytométrie en flux à l’acridine orange est une technique objective particulièrement bien adaptée à l’investigation de la structure de la chromatine, tant à l’échelon de chacun des spermatozoïdes, qu’à l’échelon de tout l’éjaculat. Elle permet de tracer les noyaux des cellules jenes durant toute la spermatogenèse, du stade diploïde, passant par le stade tétraploïde. jusqu’au stade haploïde du spermatozoïde mature. Elle permet aussi de suivre le processus de maturation des spermatozoïdes durant la traversée de l’épididyme. Elle permet d’identifier des défauts de condensation de la chromatine spermatique de types divers: hypo-condensation, hyper-condensation, aberrations diverses ainsi que des troubles de la décondensation de la chromatine, détectables par une épreuvein vitro. Ces défauts sont susceptibles de perturber le pouvoir fécondant des spermatozoïdes, même après micro-injection dans l’ovocyte. Une meilleure compréhension des conditions assurant l’intégrité et la stabilité de la chromatine nucléaire pourrait dans l’avenir, nous aider à améliorer la qualité des techniques utilisées en procréation médicalement assistée.

Abstract

During spermatozogenesis, sperm nucleosomal DNA type, linked to histones, is transformed into a special form bound to small basic proteins, the protamines. This process allows sperm nucleus to condense and mature. This maturation process is achieved in the epididymis. When a spermatozoon enters an oocyte, protamines are released and replaced by histones, enabling the sperm nucleus to expand into a male pronucleus. Flow cytometry using acridine orange staining is an objective and quantitative technique well-adapted for the investigation of the chromatin structure at the level of each spermatozoon, as well as the whole ejaculate. This technique allows tracing the young sperm cell nuclei from the diploid stage, through tetraploid until the final haploid stage in mature spermatozoa. It allows also following the sperm maturation process during the epididymal transit. It detects various sperm chromatin condensation defects, hypocondensation, hypercondensation or other aberrations, as well as decondensation defects by using an in vitro assay. These defects may impair sperm fertilizing ability, even after sperm microinjection into the oocyte. Better understanding of sperm chromatin integrity and stability prerequisites might help us improving the quality of various technologies used in assisted medical procreation.

References

  1. 1.

    ARAVINDAN G.R., RAVINDRANATH N., GOPALA-KRISHNAN K., MOUDGAL N.R.: DNA flow cytometric analysis of testicular germ cell populations of the Bonnet Monkey (Macaca radiata) as a function of sexual maturity. J Reprod Fertil., 1990, 89:397–406.

  2. 2.

    AUGER J., DADOUNE J.-P.: Nuclear status of human sperm cells by transmission electron microscopy and image cytometry: changes in nuclear shape and chromatin texture during spermatogenesis and epididymal transit. Biol Reprod, 1993, 49:166–75.

  3. 3.

    BALLACHEY B.E., EVENSON D.P., SAACKE R.G.: The Sperm Chromatin Structure Assay. J. Androl., 1988, 9: 109–15.

  4. 4.

    BANERJEE S., HULTEN M.A.J.: Sperm nuclear chromatin transformations in somatic cell-free extracts. Mol. Reprod. Dev., 1994, 37: 305–17.

  5. 5.

    BARTOOV B., ELTES F., WEISSENBERG R., LUNENFELD, B.: Morphological characterization of abnormal human spermatozoa using transmission electron microscopy. Arch. Androl., 1980, 5: 305–22.

  6. 6.

    BEDFORD J.M., CALVIN, H.I.: The occurrence and possible functional significance of S-S crosslinks in sperm heads, with particular reference to eutherian mammals. J. Exp. Zool., 1974 188: 137–56.

  7. 7.

    BROWN, D.B., NAGAMANI, M.: Use of Xenopus laevis frog egg extract in diagnosing human male unexplained infertility. Yale J. Biol. Med., 1992, 65: 29–38.

  8. 8.

    CAMERON L.A., POCCIA D.L.: In vitro development of the sea urchin male pronucleus. Dev. Biol., 1994, 162: 568–78.

  9. 9.

    CHAN P.J., TREDWAY D.R.: Association of human sperm nuclear decondensation and in vitro penetration ability. Andrologia, 1992, 24: 77–81.

  10. 10.

    CHITALE A.R., RATHAUR R.G.: Nuclear decondensation of sperm head and failure at in vitro fertilization: An ultrastructural study. Hum. Reprod., 1995, 10: 594–8.

  11. 11.

    COLLEU D., LESCOAT, GOURANTON J.: Nuclear maturity of human spermatozoa selected by swim-up or by Percoll gradient centrifugation procedures. Fertil. Steril., 1996, 65, 160–4.

  12. 12.

    COOPER T. G.: The human epididymis — is it necesary? J. Androl., 1993, 16, 245–250.

  13. 13.

    DADOUNE J.P.: The nuclear status of human sperm cells. Micron., 1995, 26:323–45

  14. 14.

    ENGH, E., CLAUSEN, O.P., SCHOLBERG, A., TOLLEFSRUD, A., PURVIS, K.: Relationship between sperm quality and chromatin condensation measured by DNA fluorescence using flow cytometry. Int. J. Androl., 1992, 15:407–15.

  15. 15.

    EVENSON, D.P., MELAMED M.R.: Rapid analysis of normal and abnormal cell types in human semen and testis biopsies by flow cytometry. J. Histochem. Cytochem. 1983, 31 (1A Suppl): 248–253.

  16. 16.

    EVENSON D.P., DARZYNKIEWICZ Z., JOST, L., JANCA F., BALLACHEY B.: Changes in accessibility of DNA to various fluorochromes during spermiogenesis. Cytometry, 1986, 7: 45–53.

  17. 17.

    EVENSON D.P., BAER R.K., JOST L.K.: Flow cytometric analysis of rodent epididymal sperm chromatin condensation and loss of free sulfhydryl groups. Mol. Reprod. Dev., 1989, 1:283–8.

  18. 18.

    EVENSON, D.P.: Flow cytometric analysis of male germ cell quality. Methods Cell Biol., 1990, 33: 401–10.

  19. 19.

    EVENSON, D.P., JOST, L.K., BAER, R.K., TURNER, T.W. AND SCHRADER, S.M.: Individuality of DNA denaturation patterns in human sperm as measured by the Sperm Chromatin Structure Assay. Reproductive Toxicology, 1991, 5: 115–25.

  20. 20.

    GOLAN R., COOPER T.G., OSCHRY Y., et coll.: Changes in chromatin condensation of human spermatozoa during epididymal transit as determined by flow cytometry. Human Reprod, 1996, 11:1457–62.

  21. 21.

    GOLAN R., SHOCHAT L., SOFFER Y. et coll.: Evaluation of chromatin condensation in human spermatozoa: a flow cytometric assay using acriding orange staining. Mol Human Reprod, 1997a, 3: 47–54.

  22. 22.

    GOLAN R., COOPER T.G., OSCHRY Y., WEINBAUER G. F., SHOCHAT L., LEWIN L.M.: Epididymal maturation of chromatin in spermatozoa from control monkeys (Macaca fascicularis) and those treated with Cetrorelix, a gonadotrophin-releasing-hormone antagonist. Biol. Reprod., 1997b, 57:534–539.

  23. 23.

    GREEN G.R., BALHORN R., POCCIA D.L., HECHT N.B.: Synthesis ans processing of mammalian protamines and trnsition proteins: Mol. Reprod. Dev., 1994, 37: 255–63.

  24. 24.

    GRIVEAU, J.F., CHARBONNEAU, M., BLANCHARD, Y. et al.: Decondensation of human sperm nuclei and HP1 protamine degradation from normospermia and asthenospermia in Xenopus egg extracts. Archives Androl., 1992, 29: 127–36

  25. 25.

    HAIDL, G., SCHILL, W.B. (1994) Assessment of sperm chromatin condensation: an important test for prediction of IVF outcome. Arch. Androl. 32:263–266.

  26. 26.

    HAMAMAH S., COUET M.L., CORCIA L., POINDRON J., ROYERE D., LANSAC J. Does human sperm quality and the time of ICSI injection following HCG administration influence the ICSI outcome? Abstract Vol. P-071, Human Reprod, 1998, 13: 165.

  27. 27.

    HOSHI K., YANAGIDA K., KATAYOSE H. YAZAWA H., SATO A., YANAGIMACHI R.: Change of function during sperm maturation. In: Perspectives on Assisted Reproduction, Mori, T., Aono, T., Tominaga, T., Hiroi, M. eds. Rome, Ares-Serono Symp. Pubs, 1994, 617–24.

  28. 28.

    JAGER S., WIJCHMAN J., KREMER J.: Studies on the decondensation of human, mouse and bull sperm nuclei by heparin and other polyanions. J. Exp. Zool., 1990, 256: 315–22.

  29. 29.

    JANCA F.C., JOST L.K., EVENSON D.P.: Mouse testicular and sperm cell development characterized from birth to adulthood by dual parameter flow cytometry. Biol Reprod., 1986, 34: 613–23.

  30. 30.

    KOSOWER, N. S., KATAYOSE, H., YANAGIMACHI, R.: Thiol-disulfide status and acridine orange fluorescence of mammalian sperm nuclei. J. Androl., 1992, 13: 342–8.

  31. 31.

    LASSALLE B., TESTART J.: Sequential transformation of human spermnucleus in human egg. J. Reprod. Fertil., 1991, 91: 393–402.

  32. 32.

    LE LANNOU D., BLANCHARD Y.: Nuclear maturity and morphology of human spermatozoa selected by Percoll density gradient centrifugation or swim-up procedure. J. Reprod. Fertil., 1988, 84: 551–6.

  33. 33.

    LEWIN L. M., SHOCHAT L. & GOLAN R. (1998) Surfing the first spermatogenic wave: A flow cytometric investigation. Isr. Fert. Soc. Ann. Meeting. Abstract Vol. P18.

  34. 34.

    LIPITZ, S., BARTOOV, B., RAJUAN, C. et coll. Sperm head ultramorphology and chromatin stability of males with unexplained infertility who fail to fertilize normal human ova in vitro. Andrologia, 1992, 24: 261–69.

  35. 35.

    MALKOV M., FISHER Y, DON J. Developmental schedule of postnatal rat testis determined by flow cytometry. Biol Reprod., 1998 59: 84–92.

  36. 36.

    MIEUSSET R.: Spermatozoa and embryo development. In: Hammah S, Mieusset R., Dacheux JL eds. Frontiers in endocrinology. Epididymis: Role and importance in male infertility treatment. Rome, Ares Serono Symposia, 1995: 105–28.

  37. 37.

    MOLINA J., CASTILLA J.A., GIL T., HORTAS M.L., VERGARA F., HERRUZO, A.: Influence of incubation on the chromatin condensation and nuclear stability of human spermatozoa by flow cytometry. Human Reprod., 1995, 10:1280–6.

  38. 38.

    MONTAG M., TOK V., LIOW S.L. et coll.: In vitro decondensation of mammalian sperm and subsequent formation of pronuclei-like structures for micromanipulation. Mol. Reprod. Devel., 1992, 33: 338–346.

  39. 39.

    MORCOS Y., SWAN M.A.: Reactivated movement of decondensed rat sperm models and a description of their ultrastructure. J. Exp. Zool., 1994, 270: 388–98.

  40. 40.

    PASTEUR X., METEZEAU P., MAUBON I., SABIDO O., KIEFER H.: Identification of two human sperm populations using flow and image cytometry. Mol. Reprod. Dev., 1994, 38: 303–9.

  41. 41.

    PATRIZIO P, ORD T, SILBER S J, ASCH R H (1994) Correlation between epididymal length and fertilization rate of men with congenital absence of the vas deferens. Fertil. Steril., 61: 265–8.

  42. 42.

    PELUSO J.J., LUCIANO A.A. AND NULSEN J.C.: The relationship between alterations in spermatozoal deoxyribonucleic acid, heparin binding sites, and semen quality. Fertil. Steril., 1992, 57: 665–70.

  43. 43.

    PERRAULT S.D.: Chromatin remodeing in mammalian zygotes. Mutat. Res., 1992, 296: 43–55.

  44. 44.

    PHILPOTT A., LENO G.H., LASKEY R.A.: Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell, 1991, 65: 569–78.

  45. 45.

    PHILPOTT A., LENO G.H.: Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell, 1992, 69: 759–67.

  46. 46.

    REYES R., Sanchez-Vazquez M.L., Merchant-Larios H. et al.: Effect of heparin-reduced glutathione on hamster sperm DNA unpacking and nuclear swelling. Arch. Androl., 1996, 37: 33–45.

  47. 47.

    ROSIEPEN G., WEINBAUER G.F., SCHLATT S., BEHRE H.M., NIESCHLAG E.: Duration of the cycle of the seminiferous epithelium estimated by the 5-bromo-deoxy-uridine technique in laboratoty and feral rats. J Reprod Fertil., 1994, 100: 299–306.

  48. 48.

    ROUX C., DADOUNE J. P.: Use of acridine orange staining on smears of human spermatozoa after heattreatment: evaluation of the chromatin condensation. Andrologia, 1989, 21: 275–81.

  49. 49.

    ROYERE D., BARTHELEMY C., HAMAMAH S., LANSAC J. Cryopreservation of spermatozoa: a 1996 review. Human Reprod Update, 1996, 2: 553–9.

  50. 50.

    SAKKAS D., URNER F., BIANCHI P.G. et coll.: Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Human Reprod., 1996, 11: 837–43.

  51. 51.

    SAMOCHA-BONÉ D., LEWIN L.M., WEISSENBERG R et coll.: In vitro human spermatozoa nuclear decondensation. Mol Human Reprod, 1998, 4: 133–7.

  52. 52.

    Schlegel P.N., Alikani M., Berkeley A.S. et coll. Epididymal micropuncture with in vitro fertilization and oocyte micromanipulation for the treatment of unreconstructable obstructive azoospermia. Fertil. Steril., 1994, 61, 895–901.

  53. 53.

    SPANO M. & EVENSON D.P.: Flow cytometric analysis for reproductive biology. Biol. Cell, 1993, 78: 53–62.

  54. 54.

    SPANÒ M., KOLSTAD A.H., LARSEN S.B., et coll. The applicability of the flow cytometric sperm chromatine structure assay in epidiemiological studies. Human Reprod, 1998, 13: 2495–2505.

  55. 55.

    SUTER L., KOCH E., BECHTER R., BOBADILLA M. (1997) Three parameter flow cytometric analysis of rat spermatogenesis. Cytometry 27: 161–168.

  56. 56.

    TEJADA R. I., MITCHELL J. C., NORMAN A., MARIK J. J., FRIEDMAN S.: A test for the practical evaluation of male fertility by acridine orange (AO) fluorescence. Fertil. Steril., 1984, 42: 87–91.

  57. 57.

    UEHARA T., YANAGIMACHI R.: Behaviour of nuclei of testicular, caput and cauda epididymal spermatozoa injected into hamster eggs. Biol. Reprod., 1977, 16, 315–21.

  58. 58.

    YOSSEFI S, OSCHRY Y AND LEWIN L. M.: Chromatin condensation in hamster sperm: a flow cytometric investigation. Mol Reprod Devel., 1994, 37, 93–8.

  59. 59.

    WARD W.S.: Chromosome Organization in Mammalian Sperm Nuclei. In: Barratt C., De Jonge C., Mortimer D., Parinaud J. eds. Genetics of Human Male Fertility. Paris, Editions E.D.K., 1997: 147–163,

  60. 60.

    WEISSENBERG R., YOSSEFI S., BELLA R., LEWIN L. M.: Changes during puberty in chromatin condensation, morphology and fertilizing ability of epididymal sperm of the golden hamster. Andrologia, 1995, 27: 341–4

  61. 61.

    WEISSENBERG R., AVIRAM A., GOLAN R. et coll.: Concurrent use of flow cytometry and fluorescence insitu hybridization techniques for detecting faulty meiosis in a human spermatozoa sample. Mol Human Reprod, 1998, 4: 61–6

  62. 62.

    ZUCKER R.M., PERREAULT S.D., ELSTEIN K.H.: Utility of light scatter in the morphological analysis of sperm. Cytometry, 1992, 13: 39–47.

Download references

Author information

Correspondence to Y. Soffer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soffer, Y., Lewin, L.M. Analyse de la structure chromatinienne du sperme par la cytométrie en flux à l’acridine orange. — intérêt clinique. Androl. 9, 261–271 (1999). https://doi.org/10.1007/BF03035238

Download citation

Mots-clés

  • cytométrie en flux
  • acridine orange
  • spermatogénèse
  • maturation des spermatozoïdes
  • pouvoir fécondant des spermatozoïdes
  • assistance médicale à la procréation
  • hypo-condensation
  • hyper-condensation
  • aberrations de la chromatine spermatique
  • défauts de décondensation de la chromatine

Key-Words

  • Flow cytometry
  • acridine orange
  • spermatogenesis
  • sperm maturation
  • sperm fertilizing ability
  • assisted medical procreation
  • sperm chromatin
  • hypocondensation
  • hypercondensation
  • aberrations
  • chromatin decondensation defects