Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Composition lipidique des spermatozoides humains et susceptibilité au stress oxydant avant et après migration dans le mucus cervical

Human sperm lipid content and susceptibility to reactive oxygen species (ROS) before and after migration through human cervical mucus

Resume

L’intérêt porté aux effets physiopathologiques des dérivés actifs de l’oxygène (DAO) dans la fertilité masculine est de plus en plus important. Le spermatozoïde humain est une cellule très vulnérable au stress oxydant compte tenu de sa richesse en acides gras polyinsaturés. L’importance des dommages oxydatifs dans les spermatozoïdes dépend surtout de la capacité des fluides environnants à arrêter la chaîne de peroxydation lipidique membranaire. Les secrétions des tractus génitaux masculins et féminins constituent des microenvironnements qui jouent un rôle déterminant dans l’expression du pouvoir fécondant des spermatozoïdes via des échanges avec la membrane plasmique, et assurent une protection vis-à-vis d’un stress oxydant en maintenant l’équilibre de la balance prooxydants/antioxydants. Le déséquilibre de cette balance dans l’épididyme ou dans le sperme éjaculé, induit plusieurs dysfonctions spermatiques. En revanche, il existe de très rares données concernant les conséquences d’un stress oxydant au niveau du tractus génital féminin sur les caractéristiques spermatiques.

Après avoir abordé, sous forme d’une revue bibliographique, les modifications de la composition lipidique des spermatozoïdes au cours de leur maturation et les effets physiopathologiques des DAO sur les fonctions des spermatozoïdes humains, nous rapportons nos résultats concernant les modifications de la composition lipidique des spermatozoïdes humains après migration dans le mucus cervical et l’influence de la qualité de ce dernier sur les caractéristiques des spermatozoïdes sélectionnés après migration.

Nous avons démontré une baisse des lipides dans les spermatozoïdes humains après migration dans le mucus cervical (vitamine E, cholestérol, phospholipides diacyles, sphingomyéline et plasmalogènes). Cette baisse, associée à un enrichissement lipidique concomitant des mucus cervicaux, est en faveur d’un efflux actif des lipides membranaires des spermatozoïdes vers les glycoprotéines des mucus cervicaux. Par ailleurs, lorsque les mucus cervicaux contenaient des polynucléaires neutrrophiles (PNN), les taux de phospholipides et la quantité de DAO produite par les spermatozoïdes étaient significativement plus élevés que lorsque les spermatozoïdes avaient migré dans des mucus cervicaux dépourvus de PNN. L’infiltration des mucus cervicaux par les PNN joue un rôle possiblement délétère sur les structures et fonctions des spermatozoïdes et inhiberait l’interaction physiologique entre les spermatozoïdes et le mucus cervical.

Abstract

Spermatozoa are particularly susceptible to damage induced by ROS, especially as their plasma membrane contains large amounts of polyunsaturated fatty acids. Mammalian sperm cells develop the capacity to fertilise ova during transport in the male and female reproductive tracts. The nature and quality of the micro-environment of the female reproductive tract are important factors for sperm selection, capacitation and subsequent acrosome reaction.In vitro experiments using capacitating media have shown remodeling of the lipid composition of the sperm membrane during these steps and the same approaches have also shown that a low level of ROS was necessary. The oxidative status of the female genital tract is therefore certainly of primary importance for the physiological maturation of the sperm cell. It has been previously reported that an inappropriate oxidative balance in the male genital tract (ie, an excessive ROS production overwhelming all antioxidant strategies) impairs the structure and several functions of sperm cells. This phenomenon may arise in the female genital tract, but has never been investigated.

The present paper is a review of the literature on these subjects and also reports our results concerning the changes in semen lipid content during cervical mucus migration and the effect of cervical mucus polymorphonuclear (PMN) cells on sperm characteristics.

We showed that the sperm levels of vitamin E, cholesterol, phospholipids, sphingomyelin and plasmalogen assessed by HPLC decreased after migration through cervical mucus. These modifications were observed in parallel with lipid enrichment of the cervical mucus, suggesting an efflux of cholesterol and lipids from sperm cells. The spermatozoa recovered postmigration in the cervical mucus were characterised by low levels of the various lipid classes.

Spermatozoa that migrated in cervical mucus samples with a considerable quantity of polymorphonuclear leukocytes (PMN) also showed significantly increased levels of sphingomyelin, diacyl phospholipids and plasmalogens in comparison to spermatozoa that migrated in cervical mucus devoid of PMN. Finally, we also found that PMA-induced ROS production was significantly increased for spermatozoa treated with cervical mucus containing PMN.

References

  1. 1.

    AITKEN R.J.: The Amoroso Lecture. The human spermatozoon —a cell in crisis? J. Reprod. Fertil., 1999, 115: 1–7.

  2. 2.

    AITKEN R.J.: Free radicals, lipid peroxydation and sperm function. Reprod. Fertil. Dev., 1995, 7: 659–669.

  3. 3.

    AITKEN R.J., BAKER H.W.G.: Seminal leucocytes: passengers, terrorists or good samaritans? Hum. Reprod., 1995, 10: 1736–1739.

  4. 4.

    AITKEN R.J., CLARKSON J.S.: Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species. J. Reprod. Fertil., 1987, 81: 459–469.

  5. 5.

    AITKEN R.J., CLARKSON J.S., FISHEL S.: Generation of reactive oxygen species, lipid peroxydation, and human sperm function. Biol. Reprod., 1989, 41: 183–197.

  6. 6.

    AITKEN R.J., FISHER H.M., FULTON M.et al.: Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol. Reprod. Dev., 1997, 47: 468–482.

  7. 7.

    AITKEN R.J., GORDON E., HARKISS D.et al.: Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol. Reprod., 1998, 59: 1037–1046.

  8. 8.

    AITKEN R.J., HARKISS D., KNOX W., PATERSON M., IRVINE D.S.: A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, c AMP-mediated inductionof tyrosine phosphorylation. J. Cell Sci., 1998, 111: 645–656.

  9. 9.

    AITKEN RJ., KRAUSZ C.: Oxidative stress, DNA damage and the Y chromosome. Reproduction, 2001, 122: 497–506.

  10. 10.

    AITKEN R.J., PATERSON M., FISHER H., BUCKINGHAM D.W., DUIN M.: Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J. Cell Sci., 1995, 108: 2017–2025.

  11. 11.

    AITKEN R.J., WEST K., BUCKINGHAM D.: Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J. Androl., 1994, 15: 343–352.

  12. 12.

    ALVAREZ J.G., STOREY B.T.: Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev., 1995, 42: 334–346.

  13. 13.

    AMANN R.P., HAMMERSTEDT R.H., VEERAMACHANENI D.N.: The epididymis and sperm maturation: a perspective. Reprod. Fertil. Dev., 1993, 5: 361–381.

  14. 14.

    AMANN R.P., HAY S.R., HAMMERSTEDT R.H.: Yield, Characteristics, motility and cAMP content of sperm isolated from seven regions of ram epididymis. Biol. Reprod., 1982, 27: 723–733.

  15. 15.

    AUSTIN C.R.: Capacitation of spermatozoa. Int. J. Fertil., 1967, 12: 25–31.

  16. 16.

    AUSTIN C.R.: Observations on the penetration of the sperm into the mammalian egg. Aust. J. Res., 1951, 4: 581–596.

  17. 17.

    AUSTIN C.R.: The capacitation of the mammalian sperm. Nature., 1952, 170: 326.

  18. 18.

    AVELDANO M.I., ROTSTEIN N.P., VERMOUTH N.T.: Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series. Biochem. J., 1992, 283: 235–241.

  19. 19.

    AVELDANO M.I., ROTSTEIN N.P., VERMOUTH N.T.: Occurrence of long and very long polyenoic fatty acids of the n-9 series in rat spermatozoa. Lipids. 1992, 27: 676–680.

  20. 20.

    BARRATT C.L., COOKE I.D.: Sperm transport in the human female reproductive tract — a dynamic interaction. Int. J. Androl., 1991, 14: 394–411.

  21. 21.

    CHANG M.C.: Fertilization capacity of spermatozoa deposited into fallopian tubes. Nature, 1951, 168: 697–698.

  22. 22.

    CROSS N.L.: Role of cholesterol in sperm capacitation. Biol. Reprod., 1998, 159: 7–11.

  23. 23.

    DELAMIRANDE E., GAGNON C.: Capacitation associated production of superoxide anion by human spermatozoa. Free Rad. Biol. Med., 1995, 18: 487–495.

  24. 24.

    DELAMIRANDE E., GAGNON C.: Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic. Biol. Med., 1993, 14: 157–166.

  25. 25.

    DE LAMIRANDE E., GAGNON C.: Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J. Androl., 1992, 13: 368–378.

  26. 26.

    DE LAMIRANDE E., JIANG H., ZINI A., GAGNON C.: Reactive oxygen species and sperm physiology. Rev. Reprod., 1997, 2: 48–54.

  27. 27.

    DELAMIRANDE E., TSAI C., HARAKAT A., GAGNON C.: Involvement of reactive oxygen species in human sperm acrosome reaction induced by A23187, lysophosphatidylcholine, and biologic fluid ultrafiltrates. J. Androl., 1998, 19: 585–594.

  28. 28.

    FISHER H.M., AITKEN R.J.: Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metabolites. J. Exp. Zool. 1997, 277: 390–400.

  29. 29.

    FORCE A., GRISARD G., GIRAUD N., MOTTA C., SION B., BOUCHER D.: Membrane fluidity and lipid content of human spermatozoa selected by swim-up method. Int. J. Androl., 2001, 24: 327–334.

  30. 30.

    GAMZU R., YOGEV L., PAZ G., YAVETZ H., LICHTENBERG D.: Reduction of sperm cholesterol: phospholipid ratio is a possible mechanism for enhancement of human sperm binding to the zona pellucida following incubation with phosphatidylcholine liposomes. Biol. Reprod., 1997, 57: 539–546.

  31. 31.

    GIL-GUZMAN E., ORELLO M., LOPEZ M.C.et al.: Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum. Reprod., 2001, 16: 1922–1930.

  32. 32.

    GO K.J., WOLF D.P.: Albumin-mediated changes in sperm sterol content during capacitation. Biol. Reprod., 1985, 32: 145–153.

  33. 33.

    GOMEZ E., BUCKINGHAM D., BRINDLE J., LANZAFAME F., IRVINE S.D., AITKEN R.J.: Development of image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of cytoplasmic space, oxidative stress and sperm function. J. Androl., 1996, 17: 276–287.

  34. 34.

    GOULD J.E., OVERSTREET J.W., HANSON F.W.: Assessment of human sperm function after recovery from the female reproductive tract. Biol. Reprod., 1984, 31: 888–894.

  35. 35.

    GRIVEAU J.F., DUMONT E., RENARD P., CALLEGARI J.P., LE LANNOU D.: Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J. Reprod. Fertil., 1995, 103: 17–26.

  36. 36.

    GRIVEAU J.F., LELANNOU D.: Reactive oxygen species and human spermatozoa: physiology and pathology. Int. J. Androl., 1997, 20: 61–69.

  37. 37.

    GRIVEAU J.F., RENARD P., LE LANNOU D.: Anin vitro promoting role for hydrogen peroxide in human sperm capacitation. Int. J. Androl., 1994, 17: 300–307.

  38. 38.

    GRIVEAU J.F., RENARD P., LE LANNOU D.: Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int. J. Androl., 1995, 18: 67–74.

  39. 39.

    GRIZARD G., BAUCHART D., BOUCHER D.: Separation and quantification of cholesterol and major phopholipid classes in human semen by high-performance liquid chromatography and light scattering detection. J. Chromatography B, 2000, 740: 101–107.

  40. 40.

    HAIDL G., OPPER C.: Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation. Hum. Reprod., 1997, 12: 2720–2723.

  41. 41.

    HAMAMAH S., LANSON, M., BARTHELEMY, C.et al.: Analysis of the lipid content and the motility of human sperm after follicular fluid treatment. Andrologia, 1995, 27: 91–97.

  42. 42.

    HOSHI K., AITA T., YANAGIDA K., YOSHIMATSU N., SATO A.: Variation in the cholesterol/phospholipid ratio in human spermatozoa and its relationship with capacitation. Hum. Reprod., 1990, 5: 71–74.

  43. 43.

    HUSZAR G., SBARACIA M., VIGUE L., MILLER D.J., SHUR B.D.: Sperm plasma membrane remodeling during spermiogenetic maturation in men: relationship among plasma membrane beta 1, 4-galactosyltransferase, cytoplasmic creatine phosphokinase, and creatine phosphokinase isoform ratios. Biol. Reprod., 1997, 56: 1020–1024.

  44. 44.

    IRVINE D.S., TWIGG J.P., GORDON E.L., FULTON N., MILNE P.A., AITKEN R.J.: DNA integrity in human spermatozoa: relationships with semen quality. J. Androl., 2000, 21: 33–44.

  45. 45.

    JONES R.: Plasma membrane structure and remodelling during sperm maturation in the epididymis. J. Reprod. Fertil. Suppl., 1998, 53: 73–84.

  46. 46.

    JONES R., MANN T., SHERINS R.: Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal propreties of fatty acid peroxides and protective action of seminal plasma. Fertil. Steril., 1979, 31: 531–537.

  47. 47.

    JONES R., MANN T.: Lipid peroxides in spermatozoa; formation, role, of plasmalogen and physiological significance. Proc. Roy. Soc. London B, 1976, 193: 317–333.

  48. 48.

    KATZ D.F., DROBNIS E.Z., OVERSTREET J.W.: Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments. Gamete Res., 1989, 22: 443–469.

  49. 49.

    KIM J.G., PARTHASARATHY S.: Oxidation and the spermatozoa. Sem. Reprod. Endocrinol., 1998, 16: 235–239.

  50. 50.

    KRAUSZ C., MILLIS C., ROGERS S., TAN S.L., AITKEN R.J.: Stimulation of oxidant generation by human sperm suspensions using phorbol esters and formyl peptides: Relation ships with motility and fertilizationin vitro. Fertil. Steril., 1994, 62: 599–605.

  51. 51.

    LAMBERT H., OVERSTREET J.W., MORALES P.et al.: Sperm capacitation in the human female reproductive tract. Fertil. Steril., 1985, 43: 325–327.

  52. 52.

    LANGLAIS J., KAN F.W., GRANGER L., RAYMOND L., BLEAU G., ROBERTS K.D.: Identification of sterol acceptors that stimulate cholesterol efflux from human spermatozoa duringin vitro capacitation. Gamete Res., 1988, 20: 185–201.

  53. 53.

    LECLERC P., DELAMIRANDE E., GAGNON C.: Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic. Biol. Med., 1997, 22: 643–656.

  54. 54.

    LENZI A., GANDINI L., MARESCA V.et al.: Fatty acid composition of spermatozoa and immature germ cells. Mol. Hum. Reprod., 2000, 6: 226–231.

  55. 55.

    LIN Y., KAN F.W.: Regionalization and redistribution of membrane phospholipids and cholesterol in mouse spermatozoa duringin vitro capacitation. Biol. Reprod., 1996, 55: 1133–1146.

  56. 56.

    LIN D.S., CONNOR W.E., WOLF D.P., NEURINGER M., HACHEY D.L.: Unique lipids of primate spermatozoa: desmosterol and docosahexaenoic acid. J. Lipid Res., 1993, 34: 491–499.

  57. 57.

    OLLERO M., GIL-GUZMAN E., LOPEZ M.C.et al.: Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum. Reprod., 2001, 16: 1912–1921.

  58. 58.

    OLLERO M., POWERS R.D., ALVAREZ J.G.: Variation of docosahexaenoic acid content in subsets of human spermatozoa at different stages of maturation: implications for sperm lipoperoxidative damage. Mol. Reprod. Dev., 2000, 55: 326–334.

  59. 59.

    OSHEROFF J.E., VISCONTI P.E., VALENZUELA J.P., TRAVIS A.J., ALVAREZ J., KOPF G.S.: Regulation of human sperm capacitation by cholesterol efflux stimulated signal transduction pathway leading to protein kinase A mediated up regulation of protein tyrosine phosphorylation. Mol. Hum. Reprod., 1999, 5: 1017–1026.

  60. 60.

    PARKS J.E., HAMMERSTEDT R.H.: Development changes occurring in the lipids of ram epididymal spermatozoa plasma membrane. Biol. Reprod., 1985, 32: 653–668.

  61. 61.

    POULOS A., DARIN-BENNETT A., WHITE I.G.: The phospholipids-bound fatty acids and aldehydes of mammalian spermatozoa. Comp. Biochem. Physiol., 1973, 46: 541–549.

  62. 62.

    RAMOS L., WETZELS A.: Low rates of DNA fragmentation in selected motile human spermatozoa assessed by the TUNEL assay. Hum. Reprod., 2001, 16: 1703–1707.

  63. 63.

    RICHER S.C., FORD W.C.A.: Critical investigation of NADPH oxidase activity in human spermatozoa. Mol. Hum. Reprod., 2001, 3: 237–244.

  64. 64.

    SALEH R.A., AGARWAL A., KANDIRALI E.et al.: Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil. Steril., 2002, 78: 1215–1224.

  65. 65.

    THEROND P., COUTURIER M., DEMELIER J.F., LEMONNIER F.: Simultaneous determination of the main molecular species of soybean phosphatidylcholine or phosphatidylethanolamine and their corresponding hydroperoxides obtained by lipoxygenase treatment. Lipids, 1993, 28: 245–249.

  66. 66.

    THOMAS J., FISHEL S.B., HALL J.A., GREEN S., NEWTON T.A., THORNTON S.J.: Increased polymorphonuclear granulocytes in seminal plasma in relation to sperm morphology. Hum. Reprod., 1997, 12: 2418–2421.

  67. 67.

    TOMLINSON M.J., BARRATT C.L., COOKE I.D.: Prospective study of leukocytes and leukocyte subpopulations in semen suggests they are not a cause of male infertility. Fertil. Steril., 1993, 60: 1069–1075.

  68. 68.

    TOMLINSON M.J., WHITE A., BARRATT C.L., BOLTON A.E., COOKE I.D.: The removal of morphologically abnormal sperm forms by phagocytes: a positive role for seminal leukocytes? Hum. Reprod., 1992, 7: 517–522.

  69. 69.

    TOSHIMORI K.: Maturation of mammalian spermatozoa: modifications of the acrosome and plasma membrane leading to fertilization. Cell Tissue Res., 1998, 293: 177–187.

  70. 70.

    MICHAEL L., AITKEN R.J.: Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol. Hum. Reprod., 1998, 4: 439–445.

  71. 71.

    TWIGG J., FULTON N., GOMEZ E., IRVINE D.S., AITKEN R.J.: Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum. Reprod., 1998, 13: 1429–1436.

  72. 72.

    WHITTINGTON K., FORD W.C.: Relative contribution of leukocytes and of spermatozoa to reactive oxygen species production in human sperm suspensions. Int. J. Androl., 1999, 22: 229–235.

  73. 73.

    WOLFF H.: The biologic significance of white blood cells in semen. Fertil. Steril., 1995, 63: 1143–1157.

  74. 74.

    WORLD HEALTH ORGANISATION (WHO): Laboratory manual for the examination of human semen and semen-cervical mucus interaction. 2nd ed. Cambridge, United Kingdom, The press syndicate of the University of Cambridge, 1999.

  75. 75.

    YANAGIMACHI R.: Fertility of mammalian spermatozoa: its development and relativity. Zygote, 1994, 2: 371–372.

  76. 76.

    ZALATA A.A., CHRISTOPHE A.B., DEPUYDT C.E., SCHOONJANS F., COMHAIRE F.H.: The fatty acid composition of phospholipids of spermatozoa from infertile patients. Mol. Hum. Reprod., 1998, 4: 111–118.

  77. 77.

    ZALATA A.A., CHRISTOPHE A.B., DEPUYDT C.E., SCHOONJANS F., COMHAIRE F.H.: White blood cells cause oxidative damage to fatty acid composition of phospholipids of human spermatozoa. Int. J. Androl., 1998, 21: 154–162.

  78. 78.

    ZHU J., BARRATT C.L., LIPPES J.et al.: The sequential effects of human cervical mucus, oviductal fluid, and follicular fluid on sperm function. Fertil. Steril., 1994, 61: 1129–1135.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nozha Chakroun Feki.

Additional information

Prix DEA, SALF 2002.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chakroun Feki, N., Therond, P., Jouannet, P. et al. Composition lipidique des spermatozoides humains et susceptibilité au stress oxydant avant et après migration dans le mucus cervical. Androl. 13, 381–392 (2003). https://doi.org/10.1007/BF03035205

Download citation

Mots clés

  • spermatozoïdes humains
  • lipides
  • dérivés actifs de l’oxygène
  • mucus cervical
  • polynucléaires neutrophiles

Key words

  • human spermatozoa
  • lipids
  • reactive oxygen species
  • cervical mucus
  • polymorphonuclear leukocytes