Skip to main content

Advertisement

Sécrétions apocrines et glandes annexes

Apocrine secretion in accessory sex glands

Resume

Le spermatozoïde quittant le testicule est incapable d’activité transcriptionnelle ou traductionnelle. Malgré cela, la composition en macromolécules de la surface du spermatozoïde subit des modifications majeures au cours de son passage dans le tractus reproducteur mâle. Ceci s’explique par l’interaction entre les sécrétions des différentes glandes du tractus reproducteur mâle et le spermatozoïde. Le mécanisme d’ancrage à la surface du spermatozoïde de certaines protéines nouvellement acquises, particulièrement l’ancrage glycosylphosphatidyl inositol, suggère un mode de sécrétion apocrine le long du tractus reproducteur mâle. Ce type de sécrétion a été démontré au niveau de la prostate, du canal déférent et de l’épididyme.

Notre laboratoire s’est penché sur ce phénomène particulièrement au niveau épididymaire. Nous avons montré que l’épithélium épididymaire sécrète par voie apocrine des microvésicules membranaires nommées épididymosomes. somes. Différentes protéines sont associées à ces vésicules riches en cholestérol et en sphingomyéline. Nous avons montré que certaines de ces protéines associées aux épididymosomes sont sélectivement transférées aux spermatozoïdes au cours du transit épididymaire.

En utilisant une approche protéomique, nous avons identifié certaines de ces protéines. Celles-ci comprennent les enzymes impliquées dans la voie métabolique des polyols. Nous avons également mis en évidence les interactions entre le MIF (Macrophage migration Inhibitory Factor) sécrété par l’épididyme et le spermatozoïde. Tant les polyols que le MIF peuvent être impliqués dans le contrôle de la motilité des spermatozoïdes au cours de leur transit épididymaire.

Ces résultats illustrent l’importance de la sécrétion apocrine dans la maturation des spermatozoïdes au cours de leur transit dans le tractus reproducteur mâle.

Abstract

Although differentiated spermatozoa are incapable of transcriptional or translational activity, the macromolecule composition of their surface undergoes major changes during passage in the male reproductive tract. These changes are due to sequential, well orchestrated interactions between male reproductive tract secretions and the spermatozoan, particularly as it travels along the epididymis. Some of the sperm proteins acquired during maturation along the excurrent duct behave as integral membrane proteins. In fact, some epididymis-derived proteins are glycosyl phosphatidylinositol (GPI) anchored to the sperm plasma membrane, which raises the question of the mechanisms by which these proteins are secreted by the epididymal epithelium.

Our laboratory has identified a family of proteins added to the sperm surface during epididymal transit. These proteins are GPI anchored and the deduced amino acid sequences revealed the absence of a signal peptide in the N-terminal sequence of these proteins. These findings suggest that these proteins are secreted in an apocrine manner by the epididymal epithelium. Apocrine secretion involves formation of a cytoplasmic bleb in the apical region of the epithelial cells that is released into the intraluminal compartment. These blebs disintegrate and release small membranous vesicles generically called exosomes or epididymosomes when secreted by the epididymis. These vesicles are rich in sphingomyelin and are characterized by a high cholesterol/phospholipid ratio. Exosomes have also been reported to be secreted by the prostate, epididymis, and vas deferens.

Many proteins are associated with epididymosomes, and some of them are selectively transferred to spermatozoa during epididymal transit. We have identified some of these proteins by a proteomic approach, including an aldose reductase and a sorbitol dehydrogenase, two enzymes involved in the polyol pathway. Another protein associated with epididymosomes that is transferred to spermatozoa is a cytokine called “Macrophage migration Inhibitory Factor”. During epididymal maturation, this protein is associated with the outer dense fibers of the sperm flagellum and modulates the formation of disulfide bonds. It is hypothesized that both the polyol pathway and apocrine secretion of MIF by the epididymal epithelium modulate sperm motility during transit along the male reproductive tract. Further research is needed to understand the functions of other proteins secreted in an apocrine manner by the various glands of the male reproductive tract.

References

  1. 1.

    AGRAWAL Y., VANHA-PERTTULA T.: Effect of secretory particles in bovine seminal vesicle secretion on sperm motility and acrosome reaction. J. Reprod. Fertil., 1987, 79: 409–419.

  2. 2.

    ARIENTI G., CARLINI E., DE COSMO A.M. et al.: Prostasome-like particles in stallion semen. Biol. Reprod., 1998, 59: 309–313.

  3. 3.

    ARIENTI G., CARLINI E., POLCIA A. et al.: Fatty acid pattern of human prostasome lipid. Arch. Biochem. Biophys., 1998, 358: 391–395.

  4. 4.

    ARIENTI G., CARLINI E., SACCARDI C. et al.: CA. Role of human prostasomes in the activation of spermatozoa. J. Cell Mol. Med., 2004, 8: 77–84.

  5. 5.

    AUMULLER G., WILHELM B., SEITZ J.: Apocrine secretionfact or artifact? Anat. Anz., 1999, 181: 437–446.

  6. 6.

    BERUBE B., LEFIEVRE L., COUTU L. et al.: Regulation of the epididymal synthesis of P26h, a hamster sperm protein. J. Androl., 1996, 17: 104–110.

  7. 7.

    BERUBE B., SULLIVAN R.: Inhibition of invo fertilization by active immunization of male hamsters against a 26-kDa sperm glycoprotein. Biol. Reprod., 1994, 51: 1255–1263.

  8. 8.

    BOUE F., BERUBE B., DE LAMIRANDE E. et al.: Human sperm-zona pellucida interaction is inhibited by an antiserum against a hamster sperm protein. Biol. Reprod., 1994, 51: 577–587.

  9. 9.

    BOUE F., BLAIS J., SULLIVAN R.: Surface localization of P34H an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa. Biol. Reprod., 1996, 54: 1009–1017.

  10. 10.

    BOUE F., SULLIVAN R.: Cases of human infertility are associated with the absence of P34H an epididymal sperm antigen. Biol. Reprod., 1996, 54: 1018–1024.

  11. 11.

    BREITBART H., RUBINSTEIN S.: Characterization of Mg2+-and Ca2+-ATPase activity in membrane vesicles from ejaculated ram seminal plasma. Arch. Androl., 1982, 9: 147–157.

  12. 12.

    CAFLISCH C.R., DUBOSE T.D. JR.: Effect of vasectomy on in situ pH in rat testis and epididymis. Contraception, 1990, 42 589–595.

  13. 13.

    CALVIN H.I., YU C.C., BEDFORD J.M.: Effects of epididymal maturation, zinc (II) and copper (II) on the reactive sulfhydryl content of structural elements in rat spermatozoa. Exp. Cell Res., 1973, 81: 333–341.

  14. 14.

    CHRISTOVA Y., JAMES P., MACKIE A., et al.: Molecular diffusion in sperm plasma membranes during epididymal maturation. Mol. Cell. Endocrinol., 2004, 216: 41–46.

  15. 15.

    COOPER T.G.: Interactions between epididymal secretions and spermatozoa. J. Reprod. Fertil., 1998, Suppl 53: 119–136.

  16. 16.

    DASSOULI A., DARNE C., FABRE S. et al.: Vas deferens epithelial cells in subculture: a model to study androgen regulation of gene expression. J. Mol. Endocrinol., 1995, 15: 129–141.

  17. 17.

    EICKHOFF R., BALDAUF C., KOYRO H.W. et al.: Influence of macrophage migration inhibitory factor (MIF) on the zinc content and redox state of protein-bound sulphydryl groups in rat sperm: indications for a new role of MIF in sperm maturation. Mol. Hum. Reprod., 2004, 10: 605–611.

  18. 18.

    EICKHOFF R., WILHELM B., RENNEBERG H. et al.: Purification and characterization of macrophage migration inhibitory factor as a release and transfer to spermatozoa. Mol. Med., 2001, 7: 27–35.

  19. 19.

    FORNES M.W., BARBIERI A., CAVICCHIA J.C.: Morphological and enzymatic study of membrane-bound vesicles from the lumen of the rat epididymis. Andrologia, 1995, 27: 1–5.

  20. 20.

    FRAILE B., MARTIN R., DE MIGUEL M.P. et al.: Light and electron microscopic immunohistochemical localization of protein gene product 9.5 and ubiquitin immunoreactivities in the human epididymis and vas deferences. Biol. Reprod., 1996, 55: 291–297.

  21. 21.

    FRENETTE G., LESSSARD C., MADORE E. et al.: Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis. Biol. Reprod., 2003, 69: 1586–1592.

  22. 22.

    FRENETTE G., LESSARD C., SULLIVAN R.: Pelyol pathway along the bovine epididymis. Mol. Reprod. Dev., 2004, 69: 448–456.

  23. 23.

    FRENETTE G., LESSARD C., SULLIVAN R.: Selected proteins of “prostasome-like particles” from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol. Reprod., 2002, 67: 308–313.

  24. 24.

    FRENETTE G., SLLIVAN R.: Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol. Reprod. Dev., 2001, 59: 115–121.

  25. 25.

    GAUDREAULT C., LEGARE C., BERUBE B. et al.: Hamster sperm protein, p26h: a member of the short-chain dehydrogenase/reductase superfamily. Biol. Reprod., 1999, 61: 264–273.

  26. 26.

    GAUDREAULT C., MONTFORT L., SULLIVAN R.: Effect of immunization of hamsters against recombinant P26h on fertility rates. Reproduction, 2002, 123: 307–313.

  27. 27.

    GHOSH M., ROY S.K., CHOWDHURY A.R.: Zinc and copper conent in rat epididymis and vas deferens. Endokrinologie, 1978, 71: 206–209.

  28. 28.

    GROOS S., WILHELM B., RENNEBERG H. et al.: Simultaneous apocrine and merocrine secretion in the rat coagulating gland.Cell Tissue Res., 1999, 295: 495–504.

  29. 29.

    GUILLEMETTE C., THABET M., DOMPIERRE L. et al.: Some vasovasostomized men are characterized by low levels of P34H, an epididymal sperm protein. J. Androl., 1999, 20: 214–219.

  30. 30.

    HERMO L., JACKS D.: Nuture’s ingenuity: bypassing the classical secretory route via apocrine secretion. Mol. Reprod. Dev., 2002, 63: 394–410.

  31. 31.

    JONES R.: Sperm survival versus degradation in the Mammalian epididymis: a hypothesis. Biol. Reprod., 2004, 71: 1405–1411.

  32. 32.

    KIRCHHOFF C., HALE G.: Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation. Mol. Hum. Reprod., 1996, 2: 177–184.

  33. 33.

    KRAVETS F.G., LEE J., SINGH B. et al.: Prostasomes: current concepts. Prostate, 43, 2000: 169–174.

  34. 34.

    LEGARE C., BERUBE B., BOUE F. et al.: Hamster sperm antigen P26h is a phosphatidylinositol-anchored protein. Mol. Reprod. Dev., 1999, 52: 225–233.

  35. 35.

    LEGARE C., GAUDREAULT C., ST-JACQUES S. et al.: P34H sperm protein is preferentially expressed by the human corpus epididymidis.Endocrinology, 1999, 140: 3318–3327.

  36. 36.

    LEVINE N., KELLY H. Measurement of pH in the epididymis in vivo. J. Reprod. Fertil., 1978, 52: 333–335.

  37. 37.

    MANIN M., LECHER P., MARTINEZ A., et al.: Exportation of mouse vas deferens protein, a protein without a signal peptide, from mouse vas deferens epithelium: a model of apocrine secretion. Biol. Reprod., 1995, 52: 50–62.

  38. 38.

    MINELLI A., MORONI M., MARTINEZ E. et al.: Occurrence of prostasome-like membrane vesicles in equine seminal plasma. J. Reprod. Fertil., 1998, 114: 237–243.

  39. 39.

    MONTFORT L., FRENETTE G., SULLIVAN R.: Sperm-zona pellucida interaction involves a carbonyl reductase activity in the hamster. Mol. Reprod. Dev., 2002, 61: 113–119.

  40. 40.

    NICKEL W.: The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur. J. Biochem., 2003, 270: 2109–2119.

  41. 41.

    PARENT S.L.L., BRINDLE Y., SULLIVAN R.: Bull subfertility is associated with low levels of a sperm membrane antigen. Mol. Reprod. Dev., 1999, 52: 57–65.

  42. 42.

    REJRAJI H., VERNET P., DREVET J.R.: GPX5 is present in the mouse caput and cauda epididymidis lumen at three different locations. Mol. Reprod. Dev., 2002, 63: 96–103.

  43. 43.

    RONQUIST G.: Zinc enrichment in prostasomes. Int. J. Androl., 1998, 21: 233–234.

  44. 44.

    RONQUIST G., BRODY I., GOTTFRIES A. et al.: An Mg2+ and Ca2+-stimulated adenosine triphosphatase in human prostatic fluid-part II. Andrologia, 1978, 10: 427–433.

  45. 45.

    RONQUIST G., NILSSON B.O.: The Janus-faced nature of prostasomes: their pluripotency favours the normal reproductive process and maligant prostate growth. Prostate Cancer Prostatic Dis., 2004, 7: 21–31.

  46. 46.

    SAEZ F., FRENETTE G., SULLIVAN R.: Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells. J. Androl., 2003, 24: 149–154.

  47. 47.

    SULLIVAN R.: Male fertility makers, myth or reality. Anim. Reprod. Sci., 2004, 82–8, 341–347.

  48. 48.

    SULLIVAN R., BLEAU G.: Interaction between isolated components from mammalian sperm and egg. Gamete Res., 1985, 12: 101–116.

  49. 49.

    SULLIVAN R., FRENETTE G., LESSARD C. et al.: Sperm antigen acquisition in the epididymis: A role for epididymosomes. In: Hinton B.T., Turner T. eds. Epididymis III. Charlottesville (VA, USA), Van Doren Company, 2003, 130–136.

  50. 50.

    SULLIVAN R., ROBITAILLE G.: Heterogeneity of epididymal spermatozoa of the hamster. Gamete Res., 1989, 24: 229–236.

  51. 51.

    SUTOVSKY P., MORENO R., RAMALHO-SANTOS J. et al.: A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalina epididymis. J. Cell Sci., 2001, 114: 1665–1675.

  52. 52.

    UTLEG A.G., YI E.C., XIE T. et al.: Proteomic analysis of human prostasomes. Prostate, 2003, 56: 150–161.

  53. 53.

    YANAGIMACHI R., KAMIGUCHI Y., MIKAMO K. et al.: Maturation of spermatozoa in the epididymis of the Chinese hamster. Am. J. Anat., 1985, 172: 317–330.

Download references

Author information

Correspondence to Robert Sullivan.

Rights and permissions

Reprints and Permissions

About this article

Mots clés

  • épididyme
  • exosomes
  • maturation
  • sécrétion
  • protéines

Key words

  • epididymis
  • exosomes
  • maturation
  • secretion
  • proteins