Skip to main content

Contrôle neurologique de l’éjaculation

Neural control of ejaculation

Resume

Le contrôle des fonctions génito-sexuelles et du comportement sexuel par le système nerveux central demeure peu connu. Les résultats cliniques et expérimentaux indiquent que trois niveaux d’organisation participent au contrôle de l’éjaculation par le système nerveux.

Le premier niveau est représenté par les nerfs autonomes et somatiques. Quittant la moelle épinière, ils contrôlent respectivement la motricité, la vascularisation et les sécrétions du tractus génital, et les contractions des muscles striés périnéaux. Leur parcours dans les cavités abdominale et pelvienne est connu, ainsi que les effets pharmacologiques périphériques de leurs neuromédiateurs sur les tissus cibles. Ils apportent en retour des informations sensitives vers la moelle épinière.

Le second niveau est représenté par les segments spinaux (thoracolombaires sympathiques et sacrés parasympathiques et honteux) à l’origine de ces nerfs autonomes et somatiques. Leur rôle est déduit de l’observation des effets délétères des lésions spinales (niveau, étendue) sur l’éjaculation. Cependant leur mise en jeu par, et leur capacité d’intégration, des informations d’origine périphérique (stimulations génitales) et supra-spinale ne sont pas bien connues. Des travaux récents menés chez l’animal de laboratoire ont mis en évidence la participation d’une population de neurones spinaux aux mécanismes de l’éjaculation. Ces neurones sont localisés dans les segments lombaires, ils sont galaninergiques, projettent vers l’hypothalamus et sont sensibles à la substance P. Leur destruction sélective abolit l’éjaculation durant l’accouplement, mais elle épargne l’érection [93].

Enfin le dernier niveau est constitué par les structures nerveuses supraspinales. La moelle épinière reçoit des informations excitatrices et inhibitrices du bulbe rachidien, du pont et de l’hypothalamus. Ces mêmes structures reçoivent des informations sensitives des organes génitaux. Leur participation au contrôle de l’éjaculation demeure inexplorée. Elle est déduite de l’influence de certains traitements pharmacologiques sur la neurotrans-mission centrale. Chez l’Homme, la visualisation des aires cérébrales actives durant l’éjaculation a été rendue possible très récemment par l’utilisation de la tomographie par émission de positrons [37]. Les auteurs démasquent une activité importante de plusieurs aires du seul cortex droit, ainsi que du cervelet.

Il reste à comprendre la coordination intraspinale entre les noyaux moteurs autonomes et somatiques expliquant une bonne synchronisation des voies nerveuses efférentes; le rôle des informations sensitives dans le recrutement et la coordination des différents étages du système nerveux central (moelle épinière, tronc cérébral, hypothalamus, cortex); enfin la coordination entre influences excitatrices et inhibitrices partant des étages supraspinaux et s’exerçant sur la moelle épinière. D’autre part, tant la mise en place de ces réseaux neuronaux durant le développement que leur activité à partir de la puberté sont androgéno-dépendants. La recherche à venir devrait permettre de comprendre quels sont les facteurs de régulation qui permettent aux neurones, sous l’influence des androgènes, d’acquérir leur maturité et d’orienter la synthèse de leurs récepteurs et de leurs neuromédiateurs.

Abstract

The brain control of the genital tract and sexual behaviour remains poorly understood. Clinical results and basic research indicate that the neural control of ejaculation depends on three levels of organization.

The first level consists of peripheral autonomic and somatic nerves. Leaving the spinal cord, these nerves control the motility, secretions and blood supply of the genital tract, and contractions of perineal striated muscles. Their path in the abdominal cavity and the effects of their neuro-transmitters on peripheral tissues have been established. These nerves also convey sensory information from the genital tract to the spinal cord.

The second level is represented by the spinal cord. The thoracolumbar (sympathetic), and sacral (parasympathetic and pudendal) segments of the cord contain the somata of autonomic and somatic motoneurons, whose axons run in the above nerves. These motoneurons are part of a spinal network that likely organizes the activity of the whole genital tract in a given context such as copulation. The role of the different spinal cord segments in the control of ejaculation is mainly inferred from observations of the deleterious effects of spinal cord injury in human patients. A small population of galaninergic positive neurons has recently been identified in the lumbar segments of the rat spinal cord that plays a major role in ejaculation (Truitt and Coolen, 2003). Selective lesion of this population abolishes in copula ejaculations, but spares erection.

Finally, the third level of organization is represented by supraspinal nervous structures.

The spinal cord receives direct excitatory and inhibitory information from the brainstem, pons and hypothalamus. In turn, these structures receive sensory information from the genital tract. However, their role in the control of ejaculation remains poorly investigated. Again, it is mainly inferred from the observation of the deleterious effects of pharmacological treatments on brain neurotransmission. Positron emission tomography has recently been used to observe brain areas whose activity is enhanced during ejaculation in humans (Holstege et al., 2003). In this study, several areas of the right side of the cortex and the cerebellum were activated.

The targets of future clinical and basic research include: the neural basis of the required coordination between spinal autonomic and somatic nuclei that innervate the genital tract, the role of sensory information from the genital tract in the recruitment and coordination of spinal and supraspinal nuclei, and finally the integration of descending excitatory and inhibitory influences onto the spinal cord.

Both the organization during development and the activation at puberty of the spinal neural network that controls the genital tract are dependent on androgens. Future research should identify the regulatory factors that, in response to the action of androgens, provide neurons with the possibility of building their connexions and selecting their neurotransmitters and receptors.

References

  1. 1.

    ACKERMAN A.E., LANGE G.M., CLEMENS L.G.: Effects of paraventricular lesions on sex behaviour and seminal emission in male rats. Physiol. Behav., 1998, 63: 49–53.

    CAS  Article  Google Scholar 

  2. 2.

    AGMÖ A., ANDERSSON R., JOHANSSON C.: Effect of oxytocin on sperm numbers in spontaneous rat ejaculates. Biol. Reprod., 1978, 18: 346–349.

    PubMed  Article  Google Scholar 

  3. 3.

    AHLENIUS S., LARSSON K.: Lisuride, LY-141865, and 8-OHDPAT facilitate male rat sexual behavior via a non-dopaminergic mechanism. Psychopharmacology (Berl), 1984, 83: 330–334.

    CAS  Article  Google Scholar 

  4. 4.

    ARGIOLAS A., COLLU M., GESSA L., MELIS M.R., SERRA G.: The oxytocin antagonist d(CH2)5Tyr(Me)-Orn8-vasotocin inhibits male copulatory behaviour in rats. Eur. J. Pharmacol., 1988, 149: 389–392.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    ARGIOLAS A., GESSA G.L.: Central functions of oxytocin. Neurosci. Biobehav. Rev., 1991, 15: 217–231.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    ARLETTI R., BAZZANI C., CASTELLI M., BERTOLINI A.: Oxytocin improves male copulatory performance in rats. Horm. Behav., 1985, 19: 14–20.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    BEACH F.A., WESTBROOK W.H., CLEMENS L.G.: Comparison of the ejaculatory response in men and animals. Psychosom. Med., 1966, 28: 749–763.

    Google Scholar 

  8. 8.

    BELL C.: Autonomic nervous control of reproduction: circulatory and other factors. Pharmacol. Rev., 1972, 24: 657–736.

    PubMed  CAS  Google Scholar 

  9. 9.

    BENSON G.S.: Male sexual function: erection, emission and ejaculation. In: Knobil E., Neill J.D. eds. The Physiology of Reproduction, 2nd edition. New-York, Raven Press, 1994: 1489–1506.

    Google Scholar 

  10. 10.

    BERNDTSON W.E., IGBOELI G.: Spermatogenesis, sperm output and seminal quality of Holstein bulls electroejaculated after administration of oxytocin. J. Reprod. Fertil., 1988, 82: 467–475.

    PubMed  CAS  Google Scholar 

  11. 11.

    BEYER C., CONTRERAS J.L., LARSSON K., OLMEDO M., MORALI G.: Patterns of motor and seminal vesicle activities during copulation in the male rat. Physiol. Behav., 1982, 29: 495–500.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    BODANSZKY M., SHARAF H., ROY J.B., SAID S.I.: Contractile activity of vasotocin, oxytocin, and vasopressin on mammalian prostate. Eur. J. Pharmacol., 1992, 216: 311–313.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    BRACKETT N.L., PADRON O.F., LYNNE C.M.: Semen quality of spinal cord injured men is better when obtained by vibratory stimulation versus electroejaculation. J. Urol., 1997, 157: 151–157.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    BRINDLEY G.S.: The actions of parasympathetic and sympathetic nerves in human micturition, erection and seminal emission, and their restoration in paraplegic patients by implanted electrical stimulators. Proc. R. Soc. Lond., 1988, B235: 111–120.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    CANTOR J.M., BINIK Y.M., PFAUS J.G.: Chronic fluoxetine inhibits sexual behaviour in the male rat: reversal with oxytocin. Psychopharmacology, 1999, 144: 355–362.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    CARMICHAEL M.S., HUMBERT R., DIXEN J. et al.: Plasma oxytocin increases in the human sexual response. J. Clin. Endocrinol. Metab., 1987, 64: 27–31.

    PubMed  CAS  Google Scholar 

  17. 17.

    CARTER C.S.: Oxytocin and sexual behavior. Neurosci. Biobehav. Rev., 1992, 15: 131–144.

    Article  Google Scholar 

  18. 18.

    CLARK J.T., KALRA S.P., KALRA P.S.: Effects of a selective alpha 1-adrenoceptor agonist, methoxamine, on sexual behavior and penile reflexes. Physiol. Behav., 1987, 40: 747–753.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    CLARK J.T., SMITH E.R., DAVIDSON J.M.: Evidence for the modulation of sexual behavior by alpha-adrenoceptors in male rats. Neuroendocrinology, 1985, 41: 36–43.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    CONTRERAS J.L., BEYER C.: A polygraphic analysis of mounting and ejaculation in the New-Zealand white rabbit. Physiol. Behav., 1979, 23: 939–943.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    COOLEN L.M., PETERS H.J., VEENING J.G.: Fos-immuno-reactivity in the rat brain following consummatory elements of sexual behaviour: a sex comparison. Brain Res., 1996, 738: 67–82.

    PubMed  Article  Google Scholar 

  22. 22.

    DAIL W.G.: Autonomic innervation of male reproductive genitalia. In: Maggi C.A. ed. nervous control of the urogenital system. Chur, Harwood Academic Publishers, 1993: 69–101.

    Google Scholar 

  23. 23.

    DZIUK P.J., NORTON H.W.: Influence of drugs affecting the autonomic system on seminal ejaculation. J. Reprod. Fertil., 1962, 4: 47–50.

    PubMed  CAS  Google Scholar 

  24. 24.

    EINSPANIER A., IVELL R.: Oxytocin and oxytocin receptor expression in reproductive tissues of the male marmoset monkey. Biol. Reprod., 1997, 56: 416–422.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    FJELLSTRÖM D., KIHLSTRÖM J.E., MELIN P.: The effect of synthetic oxytocin upon seminal characteristics and sexual behaviour in male rabbits. J. Reprod. Fertil., 1968, 17: 207–209.

    PubMed  Google Scholar 

  26. 26.

    FRANCOIS N., MAURY M.: Sexual aspects in paraplegic patients. Paraplegia, 1987, 25: 289–292.

    PubMed  CAS  Google Scholar 

  27. 27.

    FRAYNE J., NICHOLSON H.D.: Effect of oxytocin on testosterone production by isolated rat leydig cells is mediated via a specific oxytocin receptor. Biol. Reprod., 1995, 52: 1268–1273.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    FRAYNE J., NICHOLSON H.D.: Localization of oxytocin receptors in the human and macaque monkey male reproductive tracts: evidence for a physiological role of oxytocin in the male. Mol. Human. Reprod., 1998, 4: 527–532.

    CAS  Article  Google Scholar 

  29. 29.

    GALL F.J.: Schreiben über seinen bereits geendigten Prodromus über die Verichtungen des Gehirns der Menschen und der Thiere an Herrn Jos. Fr. von Retzer. Der neue Teutsche Merkur, 1798, 3: 311–332.

    Google Scholar 

  30. 30.

    GERENDAI I., TOTH I.E., BOLDOGKOI Z., MEDVECZKY I., HALASZ B.: Central nervous system structures labelled from the testis using the transsynaptic viral tracing technique. J. Neuroendocrinol., 2000, 12: 1087–1095.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    GERENDAI I., TOTH I.E., KOCSIS K., BOLDOGKOI Z., RUSVAI M., HALASZ B.: Identification of CNS neurons involved in the innervation of the epididymis: a viral transneuronal tracing study. Autonom. Neurosci., 2001, 92: 1–10.

    CAS  Article  Google Scholar 

  32. 32.

    GERENDAI I., WIESEL O., TOTH I.E., BOLDOGKOI Z.S., RUSVAI M., HALASZ B.: Identification of neurones of the brain and spinal cord involved in the innervation of the ductus deferens using the viral tracing method. Int. J. Androl., 2003, 26: 91–100.

    PubMed  Article  Google Scholar 

  33. 33.

    GIULIANO F., RAMPIN O., JARDIN A., ROUSSEAU J.P.: Electrophysiological study of relations between the dorsal nerve of the penis and the lumbar sympathetic chain in the rat. J. Urol., 1993, 150: 1960–1964.

    PubMed  CAS  Google Scholar 

  34. 34.

    GRECO B., EDWARDS D.A., ZUMPE D., CLANCY A.N.: Androgen receptor and mating-induced fos immunoreactivity are co-localized in limbic and midbrain neurons that project to the male rat medial preoptic area. Brain Res., 1998, 781: 15–24.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    GRUBER C.M.: The autonomic innervation of the genito-urinary system. Physiol. Rev., 1933, 13: 497–609.

    Google Scholar 

  36. 36.

    HILLEGAART V., ALSTER P., UVNAS-MOBERG K., AHLENIUS S.: Sexual motivation promotes oxytocin secretion in male rats. Peptides, 1998, 19: 39–45.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    HOLSTEGE G., GEORGIADIS J.R., PAANS A.M., MEINERS L.C., VAN DER GRAAF F.H., REINDERS A.A.: Brain activation during human male ejaculation. J. Neurosci., 2003, 23: 9185–9193.

    PubMed  CAS  Google Scholar 

  38. 38.

    HONDA K., YANAGIMOTO M., NEGORO H., NARITA K., MURATA T., HIGUCHI T.: Excitation of oxytocin cells in the hypothalamic supraoptic nucleus by electrical stimulation of the dorsal penile nerve and tactile stimulation of the penis in the rat. Brain Res. Bull., 1999, 48: 309–313.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    HOUDEAU E., PRUD’HOMME M.J., RAMPIN O., ROUSSEAU J.P., SCHIRAR A.: Innervation de l’appareil génital: organisation anatomique, nature et fonctions. In: Thibault C., Levasseur M.C. eds. La reproduction chez les Mammifères et l’Homme, 2ème édition. Paris, Ellipses, 2001: 425–455.

    Google Scholar 

  40. 40.

    HUGHES A.M., EVERITT B.J., LIGHTMAN S.L., TODD K.: Oxytocin in the central nervous system and sexual behaviour in male rats. Brain Res., 1987, 414: 133–137.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    IVELL R., BALVERS M., RUST W., BATHGATE R., EINSPANIER A.: Oxytocin and male reproductive function. In: Ivell R., Holstein X. eds. The fate of the male germ cell. New-York, Plenum Press, 1997: 253–264.

    Google Scholar 

  42. 42.

    JANIG W., MCLACHLAN E.M.: Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol. Rev., 1987, 67: 1332–1404.

    PubMed  CAS  Google Scholar 

  43. 43.

    JEVREMOVIC M., MICIC S., TERZIC M.: The influence of oxytocin on reproductive function and sexual behaviour in males. Int. J. Thymology, 1993, 1: 39–45.

    CAS  Google Scholar 

  44. 44.

    KARA H., AYDIN S., AGARGN M.Y., ODABAS O., YLMAZ Y.: Efficacy of Fluoxetine in treatment of premature ejaculation: double-blind placebo-controlled study. J. Urol., 1996, 156: 1631–1632.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    KIHARA K., SATO K., ANDO M., SATO T., OSHIMA H.: Lumbosacral sympathetic trunk as a compensatory pathway for seminal emission after bilateral hypogastric nerve transections in the dog. J. Urol., 1991, 145: 640–643.

    PubMed  CAS  Google Scholar 

  46. 46.

    KIHLSTRÖM J.E., MELIN P.: The influence of oxytocin upon some seminal characteristics in the rabbit. Acta Physiol. Scand., 1963, 59: 363–369.

    Article  Google Scholar 

  47. 47.

    KNIGHT T.W.: The effect of oxytocin and adrenaline on the semen output of rams. J. Reprod. Fertil., 1974, 39: 329–336.

    PubMed  CAS  Google Scholar 

  48. 48.

    KNIGHT T.W.: A qualitative study of factors affecting the contractions of the epididymis and ductus deferens of the ram. J. Reprod. Fertil., 1974, 40: 19–29.

    PubMed  CAS  Google Scholar 

  49. 49.

    KNIGHT T.W., LINDSAY D.R.: Short-and long-term effects of oxytocin on quality and quantity of semen from rams. J. Reprod. Fertil., 1970, 21: 523–529.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    KOLBECK S.C., STEERS W.D.: Neural regulation of the vas deferens in the rat: an electrophysiological analysis. Am. J. Physiol., 1992, 263: R331-R338.

    PubMed  CAS  Google Scholar 

  51. 51.

    KOLLBERG S., PETERSON I., STENER I.: Preliminary results of an electromyographic study of ejaculation. Acta Chir. Scand., 1962, 123: 478–483.

    PubMed  CAS  Google Scholar 

  52. 52.

    KUHN R.A.: Functional capacity of the isolated human spinal cord. Brain, 1950, 73: 1–51.

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    KWONG L.L., SMITH E.R., DAVIDSON J.M., PEROUTKA S.J.: Differential interactions of “prosexual” drugs with 5-hydroxytryptamine1A and alpha 2-adrenergic receptors. Behav. Neurosci., 1986, 100: 664–668.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    LANGLEY J.N., ANDERSON H.K.: The innervation of the pelvic and adjoining viscera. J. Physiol. (London), 1895, 19: 71–130.

    CAS  Google Scholar 

  55. 55.

    LEE H.S., SONG D.H., KIM C.H., CHOI H.K.: An open clinical trial of fluoxetine in the treatment of premature ejaculation. J. Clin. Psychopharmacol., 1996, 16: 379–382.

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    LEE R.L., SMITH E.R., MAS M., DAVIDSON J.M.: Effects of intrathecal administration of 8-OH-DPAT on genital reflexes and mating behavior in male rats. Physiol. Behav., 1990, 47: 665–669.

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    LEE S., MISELIS R., RIVIER C.: Anatomical and functional evidence for a neural hypothalamic-testicular pathway that is independent of the pituitary. Endocrinology, 2002, 143: 4447–4454.

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    MACLEAN P.D., DENNISTON R.H., DUA S.: Further studies on cerebral representation of penile erection: caudal thalamus, midbrain, and pons. J. Neurophysiol., 1963, 26: 273–295.

    Google Scholar 

  59. 59.

    MAGGI M., MALOZOWSKI S., KASSIS S., GUARDABASSO V., RODBARD D.: Identification and characterization of two classes of receptors for oxytocin and vasopressin in porcine tunica albuginea, epididymis and vas deferens. Endocrinology, 1987, 120: 986–994.

    PubMed  CAS  Google Scholar 

  60. 60.

    MARSON L., MCKENNA K.E.: Stimulation of the hypothalamus initiates the urethrogenital reflex in male rats. Brain Res., 1994, 638: 103–108.

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    MARSON L., MCKENNA K.E.: CNS cell groups involved in the control of the ischiocavernosus and bulbospongiosus muscles: a transneuronal tracing study using pseudorabies virus. J. Comp. Neurol., 1996, 374: 161–179.

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    MARSON L., CARSON 3RD C.C.: Central nervous system innervation of the penis, prostate, and perineal muscles: a transneuronal tracing study. Mol. Urol., 1999, 3: 43–50.

    PubMed  Google Scholar 

  63. 63.

    MAS M., ZAHRADNIK M.A., MARTINO V., DAVIDSON J.M.: Stimulation of spinal serotonergic receptors facilitates seminal emission and suppresses penile erectile reflexes. Brain Res., 1985, 342: 128–134.

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    MATHES C.W., SMITH E.R., POPA B.R., DAVIDSON J.M.: Effects of intrathecal and systemic administration of buspirone on genital reflexes and mating behavior in male rats. Pharmacol. Biochem. Behav., 1990, 36: 63–68.

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    MCCONNELL J.A., BENSON G.S., WOOD J.: Autonomic innervation of the urogenital system: adrenergic and cholinergic elements. Brain. Res. Bull., 1982, 9: 679–684.

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    MCKENNA K.E., NADELHAFT I.: The pudendo-pudendal reflex in male and female rats. J. Autonom. Nerv. Syst., 1989, 27: 67–77.

    CAS  Article  Google Scholar 

  67. 67.

    MCKENNA K.E., CHUNG S.K., MCVARY K.T.: A model for the study of sexual function in anesthetized male and female rats. Am. J. Physiol., 1991, 261: R1276-R1285.

    PubMed  CAS  Google Scholar 

  68. 68.

    MELIN P.: Effects in vivo of neurohypophysial hormones on the contractile activity of accessory sex organs in male rabbits. J. Reprod. Fertil., 1970, 22: 283–292.

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    MICHAEL R.P., CLANCY A.N., ZUMPE D.: Effects of mating on c-fos expression in the brains of male macaques. Physiol. Behav., 1999, 66: 591–597.

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    MURPHY M.R., SECKL J.R., BURTON S., CHECKLEY S.A., LIGHTMAN S.L.: Changes in oxytocin and vasopressin secretion during sexual activity in men. J. Clin. Endocrinol. Metab., 1987, 65: 738–741.

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    MUZIKANT J., PODANY J.: Effect of oxytocin on semen quantity and quality in boars. Veterinaria Spofa, 1972, 14: 293–303.

    CAS  Google Scholar 

  72. 72.

    NICHOLSON H.D., SWANN R.W., BURFORD G.D. et al.: Identification of oxytocin and vasopressin in the testis and in adrenal tissue. Regul. Pept., 1984, 8: 141–146.

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    NICHOLSON H.D., HARDY M.P.: Luteinizing hormone differentially regulates the secretion of testicular oxytocin and testosterone by purified adult rat Leydig cellsin vitro. Endocrinology, 1992, 130: 671–677.

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    NICHOLSON H.D., PICKERING B.T.: Oxytocin, a male intragonadal hormone. Regul. Pept., 1993, 45: 253–256.

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    NICHOLSON H.D., PARKINSON T.J., LAPWOOD K.R.: Effects of oxytocin and vasopressin on sperm transport from the cauda epididymis in sheep. J. Reprod. Fertil., 1999, 117: 299–305.

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    ORR R., MARSON L.: Identification of CNS neurons innervating the rat prostate: a transneuronal tracing study using pseudorabies virus. J. Autonom. Nerv. Syst., 1998, 72: 4–15.

    CAS  Article  Google Scholar 

  77. 77.

    PATTERSON W.: Fluoxetine-induced sexual dysfunction. J. Clin. Psychiatry, 1993, 54: 71.

    PubMed  CAS  Google Scholar 

  78. 78.

    PEHEK E.A., THOMPSON J.T., HULL E.M.: The effects of intracranial administration of the dopamine agonist apomorphine on penile reflexes and seminal emission in the rat. Brain Res., 1989, 500: 325–332.

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    PEHEK E.A., THOMPSON J.T., HULL E.M.: The effects of intrathecal administration of the dopamine agonist apomorphine on penile reflexes and copulation in the male rat. Psychopharmacology, 1989, 99: 304–308.

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    PENNEFATHER J.N., LAU W.A.K., MITCHELSON F., VENTURA S.: The autonomic and sensory innervation of the smooth muscle of the prostate gland: a review of pharmacological and histological studies. J. Autonom. Pharmacol., 2000, 20: 193–206.

    CAS  Article  Google Scholar 

  81. 81.

    PESCATORI E.S., CALABRO A., ARTIBANI W., PAGANO F., TRIBAN C., ITALIANO G.: Electrical stimulation of the dorsal nerve of the penis evokes reflex tonic erections of the penile body and reflex ejaculatory responses in the spinal rat. J. Urol., 1993, 149: 627–632.

    PubMed  CAS  Google Scholar 

  82. 82.

    PETERSON I., STENER I.: An electromyographic study of the striated urethral sphincter, the striated anal sphincter, and the levator ani muscle during ejaculation. Electromyography, 1970, 1: 23–44.

    Google Scholar 

  83. 83.

    ROBINSON B.W., MISHKIN M.: Ejaculation evoked by stimulation of the preoptic area in the monkey. Physiol. Behav., 1966, 1: 269–270.

    Article  Google Scholar 

  84. 84.

    SELVAGE D.J., RIVIER C.: Importance of the paraventricular nucleus of the hypothalamus as a component of a neural pathway between the brain and the testes that modulates testosterone secretion independently of the pituitary. Endocrinology, 2003, 144: 594–598.

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    SEMANS J.H., LANGWORTHY O.R.: Observations on the neurophysiology of sexual function in the male cat. J. Urol., 1938, 40: 836–846.

    Google Scholar 

  86. 86.

    SETCHELL B.P., MADDOCKS S., BROOKS D.E.: Anatomy, vasculature, innervation and fluids of the male reproductive tract. In: Knobil E., Neill J.D. eds. The Physiology of Reproduction, 2nd edition, New-York, Raven Press, 1994: 1063–1175.

    Google Scholar 

  87. 87.

    SHANKAR U., BENJAMIN B.R., AGARWAL S.K., ANSARI M.R.: Effect of synthetic oxytocin on some of the seminal attributes in cow and buffalo bulls. J. Res. Assam Agri. Univ., 1985, 3: 231–235.

    Google Scholar 

  88. 88.

    SIGNORET J.P.: Action de l’atropine sur le comportement sexuel et la composition du sperme chez le taureau. Ann. Biol. Anim. Bioch. Biophys., 1962, 2: 163–166.

    CAS  Article  Google Scholar 

  89. 89.

    SONKSEN J., OHL D.A.: Penile vibratory stimulation and electroejaculation in the treatment of ejaculatory dysfunction. Int. J. Androl., 2002, 25: 324–332.

    PubMed  Article  Google Scholar 

  90. 90.

    STEERS W.D., MALLORY B., DEGROAT W.C.: Electrophysiological study of neural activity in penile nerve of the rat. Am. J. Physiol., 1988, 254: R989-R1000.

    PubMed  CAS  Google Scholar 

  91. 91.

    STEFANICK M.L., SMITH E.R., CLARK J.T., DAVIDSON J.M.: Effects of a potent dopamine receptor agonist, RDS-127, on penile reflexes and seminal emission in intact and spinally transected rats. Physiol. Behav., 1982, 29: 973–978.

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    STONEHAM M.D., EVERITT B.J., HANSEN S., LIGHTMAN S.L., TODD K.: Oxytocin and sexual behaviour in the male rat and rabbit. J. Endocr., 1985, 107: 97–106.

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    TRUITT W.A., COOLEN L.M.: Identification of a potential ejaculation generator in the spinal cord. Science, 2002, 297: 1566–1569.

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    VANDIS H., LARSSON K.: Seminal discharge following intracranial electrical stimulation. Brain Res., 1970, 23: 381–386.

    Article  Google Scholar 

  95. 95.

    VEENING J.G., COOLEN L.M.: Neural activation following sexual behaviour in the male and female rat brain. Behav. Brain Res., 1998, 92: 181–193.

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    WALCH K., EDER R., SCHINDLER A., FEICHTINGER W.: The effect of single-dose oxytocin application on time to ejaculation and seminal parameters in men. J. Assist. Reprod. Genet., 2001, 18: 655–659.

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    WALDINGER M.D., BERENDSEN H.H.G., BLOK B.F.M., OLIVIER B., HOLSTEGE G.: Premature ejaculation and serotonergic antidepressants-induced delayed ejaculation: the involvement of the serotonergic system. Behav. Brain Res., 1998, 92: 111–118.

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    WERSINGER S.R., BAUM M.J., ERSKINE M.S.: Mating-induced Fos-like immunoreactivity in the rat forebrain: a sex comparison and a dimorphic effect of pelvic nerve transection. J. Neuroendocrinol., 1993, 5: 557–568.

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    WITT D.M., INSEL T.R.: Increased Fos expression in oxytocin neurons following masculine sexual behaviour. J. Neuroendocrinol., 1994, 6: 13–18.

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    WORLEY R.T.S., NICHOLSON H.D., PICKERING B.T.: Testicular oxytocin: an initiator of seminiferous tubule movement? In: Saez J.M., Forest M.G., Dazord A., Bertrand J. eds. Recent Progress in Cellular Endocrinology of the Testis. Paris, INSERM, 1985: 205–212.

    Google Scholar 

  101. 101.

    YANAGIMOTO M., HONDA K., GOTO Y., NEGORO H.: Afferents originating from the dorsal penile nerve excite oxytocin cells in the hypothalamic paraventricular nucleus of the rat. Brain Res., 1996, 733: 292–296.

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    ZERMANN D.H., ISHIGOOKA M., DOGGWEILER R., SCHUBERT J., SCHMIDT R.A.: Central nervous system neurons labeled following the injection of pseudorabies virus into the rat prostate gland. Prostate, 2000, 44: 240–247.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olivier Rampin.

Additional information

Communication au XXo Congrès de la Société d’Andrologie de Langue Française, Orléans, 11–13 Décembre 2003.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rampin, O. Contrôle neurologique de l’éjaculation. Androl. 14, 428–437 (2004). https://doi.org/10.1007/BF03035176

Download citation

Mots-clés

  • nerf hypogastrique
  • chaîne sympathique paravertébrale
  • éjaculation
  • moelle épinière
  • noyau paraventriculaire de l’hypothalamus
  • ocytocine

Key words

  • hypogastric nerve
  • paravertebral sympathetic chain
  • ejaculation
  • spinal cord
  • paraventricular nucleus of the hypothalamus
  • oxytocin