Skip to main content
  • Cancer du Testicule
  • Published:

Génotoxicité des chimiothérapies et radiothérapies: Quelles sont les conséquences pour le spermatozoïde humain?

Genotoxicity of chemotherapy and radiotherapy: What are consequences for human spermatozoa?

Resume

Le pronostic des cancers de l’homme jeune en âge de procréer s’est considérablement amélioré ces dernières décades grâce aux progrès thérapeutiques. Les chimiothérapies et radiothérapies ont des effets bien connus sur la spermatogenèse. Au dela de l’atteinte quantative et qualitative de la spermatogenèse, des études réalisées chez l’animal ont pu mettre en évidence des atteintes nucléaires (aneuploïdie, présence d’adduits, fragmentation de l’ADN…) et parfois des atteintes au niveau des générations F1 et F2. Chez l’homme, l’étude des chromosomes des spermatozoïdes après radiothérapie a mis en évidence une augmentation de la fréquence des anomalies chromosomiques. Concernant la chimiothérapie, les premières études utilisaient la technique de fécondation hétérospécifique pour mettre en évidence les anomalies chromosomiques du spermatozoïde. Plus récemment, la technique d’hybridation de sondes chromosomiques fluorescentes (FISH) permet d’étudier plusieurs chromosomes sur un grand nombre de spermatozoides. Les résultats des différentes études portant sur des effectifs réduits sont variables en fonction du protocole thérapeutique administré et de la durée séparant le prélèvement de la fin du traitement. Nous avons étudié 5 patients ayant fait un prélèvement de sperme 6 à 17 mois après le protocole de chimiothérapie BEP (Bléomycin, Etoposide, Cisplatin). Nous avons mis en évidence une augmentation du taux de spermatozoïdes présentant une aneuploïdie et une diploïdie. Les résultats de notre étude et de celles du groupe de R. Martin [45, 47] évoquent la possibilité d’un effet transitoire de la chimiothérapie sur les chromosomes gamétiques. Dans le cadre de la maladie de Hodgkin d’autres études ont mis en évidence l’aspect transitoire de l’effet sur l’aneuploïdie. Au dela de l’atteinte chromosomique, l’action délétère des traitements pourrait avoir pour cible l’ADN du spermatozoïde. Ainsi des études sur des effectifs importants, utilisant d’autres métodes d’analyse nous parraissent nécessaires. Dans l’attente, il paraît souhaitable de toujours conseiller l’autoconservation de sperme avant les traitements et d’adopter une grande prudence lors du conseil apporté aux patients désirant une grossesse, précocément, après la fin des traitements.

Abstract

The prognosis of cancer in young men of childbearing potential has been considerably improved over recent decades as a result of therapeutic progress. Chemotherapy and radiotherapy have well known effects on spermatogenesis. Apart from quantitative and qualitative impairment of spermatogenesis, animal studies have also demonstrated nuclear lesions (aneuploidy, presence of adducts, DNA fragmentation, etc.) and sometimes lesions affecting the F1 and F2 generations. Chromosomal studies of human spermatozoa after radiotherapy have demonstrated an increased frequency of chromosomal anomalies. The first studies concerning the effects of chemotherapy used the heterospecific fertilization technique to demonstrate spermatozoal chromosomal anomalies. More recently, thefluorescence in situ hybridization (FISH) technique has been used to study several chromosomes on a large number of spermatozoa. The results of various studies based on small sample sizes vary as a function of the therapeutic protocol administered and the time of sperm collection in relation to the end of treatment. We studied 5 patients who provided a semen sample 6 to 17 months after completing the BOE chemotherapy protocol (Bleomycin, Etoposide, Cisplatin). We demonstrated an increased rate of aneuploid and diploid spermatozoa. The results of our study and those reported by R. Martin et al. [45, 47] suggest the possibility of a transient effect of chemotherapy on gamete chromosomes. Other studies, conducted in the context of Hodgkin’s disease, have demonstrated the transient nature of the aneuploidy effect. Apart from the harmful action on chromosomes, treatments could also damage spermatozoal DNA. Studies conducted on larger sample sizes and using other methods of analysis therefore appear to be essential. In the meantime, it appears preferable to systematically propose semen cryopreservation before treatment and to provide very cautious advice to patients desiring a pregnancy soon after completion of treatment.

References

  1. AHMADI A., NG S.C.: Developmental capacity of damaged spermatozoa. Hum. Reprod., 1999, 14: 2279–2285.

    Article  PubMed  CAS  Google Scholar 

  2. ALVAREZ R., TUSELL L., GENESCA A., MIRO R., GARCIADEL-MURO X., EGOZCUE J.: Absence of chromosomal instability of men affected by testicular cancer. Hum. Reprod., 1999, 14: 247–251.

    Article  PubMed  CAS  Google Scholar 

  3. ARAVINDAN G.R., BJORDAHL J., JOST L.K., EVENSON D.P.: Susceptibility of human sperm in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp. Cell Res., 1997, 236: 231–237.

    Article  PubMed  CAS  Google Scholar 

  4. ARMOUR J.A.L., BRINKWORTH M.H., KAMISCHKE A.: Direct analyses by small PCR of MS205 minisatellite mutation rates in sperm after mutagenic therapies. Mutat. Res., 1999, 445: 73–80.

    PubMed  CAS  Google Scholar 

  5. ARNON J., MEIROW D., LEWIS-RONESS H., ORNOY A.: Genetic and teratogenic effects of cancer treatments on gametes and embryos. Hum. Reprod. Upd., 2001, 4: 349–403.

    Google Scholar 

  6. AUGER J., KUNTSMANN J.M., CZYGLIK F., JOUANNET P.: Conservation du sperme avant traitement anticancéreux: une mesure efficace pour préserver les chances de conception future. Contr. Fertil. Sex., 1993, 21: 749–752.

    CAS  Google Scholar 

  7. AUROUX M.: Chimiothérapie anticancéreuse chez le mâle: risques pour la descendance. Andrologie, 1995, 5: 465–475.

    Article  Google Scholar 

  8. AUROUX M., DULIOUST E.: Cyclophosphamide in the male rat: Behavioral Effects in the Adult Offspring. Behav. Res., 1985, 16: 25–36.

    Article  CAS  Google Scholar 

  9. AUROUX M., DULIOUST E., NAWAR N.N.Y., YACOUB S.G.: Antimitotic Drugs (Cyclophosphamide and Vinblastine) in the male rat: Deaths and Behavorial Abnormalities in the Offspring. J. Androl., 1986, 7: 378–386.

    PubMed  CAS  Google Scholar 

  10. AUROUX M., DULIOUST E., NAWAR N.N.Y., YACOUB S.G., KEMPF E.H., EBEL A.B.: Cyclophosphamide in the male rat: cerebral biochemical changes in progeny. Biomed. Pharmacother., 1990, 44: 519–523.

    Article  PubMed  CAS  Google Scholar 

  11. AUROUX M., DULIOUST E., SELVA J., RINCE P.: Cyclophosphamide in the FO male rat: physical and behavorial changes in three successive adult generations. Mutat. Res., 1990, 229: 189–200.

    PubMed  CAS  Google Scholar 

  12. BACCETTI B., COLLODEL G., PIOMBONI P.: Apoptosis in human ejaculated sperm cells. J. Submicrosc. Cytol. Pathol., 1996, 28: 587–596.

    PubMed  CAS  Google Scholar 

  13. BACHAUD J.M., ALZIEU C., BUJAN L.: Effets de la radiothérapie sur la fonction testiculaire de l’adulte. Andrologie, 1995, 5: 476–485.

    Article  Google Scholar 

  14. BLATT J., MULVIHILL J.J., YOUNG R.G., POPLACK D.G.: Pregnancy outcome following cancer chemotherapy. Am. J. Med., 1980, 69: 828–832.

    Article  PubMed  CAS  Google Scholar 

  15. BRANDRIFF B., MEISTRICH M., GORDON L., CARRANO A., LIANG J.: Chromosomal damage in sperm of patients surviving Hodgkin’s disease following MOPP (nitrogen mustard, vincristine, procarbazine and prednisone) therapy with and without radiotherapy. Hum. Genet., 1994, 93: 295–299.

    Article  PubMed  CAS  Google Scholar 

  16. BUSCHINI A., ALESSANDRINI C., MARTINO A. et al.: Bleomycin genotoxicity and amifostine (WR-2721) cell protection in normal leukocytes vs. K562 tumoral cells. Biochem. Pharmacol., 2002, 7116: 1–9.

    Google Scholar 

  17. BYRNE J., MULVIHILL J., CONNELLY R. et al.: Reproductive problems and birth defects in survivors of Wilms’tumor and their relatives. Med. Pediatr. Oncol., 1988, 16: 233–240.

    Article  PubMed  CAS  Google Scholar 

  18. CHATTERJEE R., HAINES G.A., PERERA D.M.D., GOLDSTONE A., MORRIS I.D.: Testicular and sperm DNA damage after treatment with fludarabine for chronic lymphocytic leukaemia. Hum. Reprod., 2000, 15: 762–766.

    Article  PubMed  CAS  Google Scholar 

  19. CHEVREAU C., HUGUET F.: Chimiothérapie anticancéreuse et fertilité masculine. Andrologie, 1995, 5: 458–464.

    Article  Google Scholar 

  20. COHEN S.M., LIPPARD S.J.: Cisplatin: from DNA damage to cancer chemotherapy. Progress in Nucleic Acid Research and Molecular Biology, 2001, 67: 93–130.

    Article  PubMed  CAS  Google Scholar 

  21. COONEN E., PIETERS M., DUMOULIN J. et al.: Nonisotopic in situ hybridization as a method for nondisjunction studies in human spermatozoa. Molec. Reprod. Develop., 1991, 28: 18–22.

    Article  CAS  Google Scholar 

  22. COSTABILE R.A.: The effects of cancer and cancer therapy on male reproductive function. J. Urol., 1993, 149: 1327–1330.

    PubMed  CAS  Google Scholar 

  23. CZYGLIK F., AUGER J., ALBERT M., DAVID G.: L’autoconservation du sperme avant thérapeutique stérilisante. Nouvelle Presse Medicale, 1982, 11: 2749–2752.

    Google Scholar 

  24. DAUDIN M., BUJAN L.: Place et rôle des CECOS en cancérologie: préservation de la fertilité avant traitement anticancéreux. Oncologie, 2000, 2: 402–412.

    Google Scholar 

  25. DE MAS P., DAUDIN M., VINCENT M.C. et al.: Increased aneuploidy in spermatozoa from testicular tumour patients after chemotherapy with cisplatin, etoposide and bleomycin. Hum. Reprod., 2001, 16: 1204–1208.

    Article  PubMed  Google Scholar 

  26. EVENSON D.P., LARSON K.L., JOST L.K.: Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparaisons with other techniques. J. Androl., 2002, 23: 25–43.

    PubMed  Google Scholar 

  27. GENESCA A., CABALLIN M., MIRO R., BENET J., BONFILL X., EGOZCUE J.: Human sperm chromosomes: long-term effect of cancer treatment. Cancer Genet. Cytogenet., 1990, 46: 251–260.

    Article  PubMed  CAS  Google Scholar 

  28. GENESCA A., MIRO R., CABALLIN M., BENET J., GERMA J., EGOZCUE J.: Sperm chromosome studies in individuals treated for testicular cancer. Hum. Reprod., 1990, 5: 286–290.

    PubMed  CAS  Google Scholar 

  29. GREEN D., ZEVON M., LOWRIE G.: Congenital abnormalities in children of patients received chemotherapy for cancer in childhood or adolescence. N. Engl. J. Med., 1991, 325: 141–146.

    Article  PubMed  CAS  Google Scholar 

  30. GRIVEAU J.F., LELANNOU D.: Effects of antioxydants on human sperm preparation techniques. Int. J. Androl., 1994, 17: 225–231.

    Article  PubMed  CAS  Google Scholar 

  31. GUTTENBACH M., SCHMID M.: Determination of Y chromosome and aneuploidy in human sperm nuclei by non radioactive in situ hybridization. Am. J. Hum. Genet., 1990, 46: 553–558.

    PubMed  CAS  Google Scholar 

  32. HAAF T., WARD D.C.: Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp. Cell Res. 1995, 219: 604–11.

    Article  PubMed  CAS  Google Scholar 

  33. HAINES G.A., HENDRY J.H., DANIEL C.P., MORRIS I.D.: Increased levels of comet-detected spermatozoa DNA damage following in vivo isotopic or X-irradiation of spermatogonia. Mutat. Res., 2001, 495: 21–32.

    PubMed  CAS  Google Scholar 

  34. HOOSER S., VAN DIJK-KNIJNENBURG W., WAALKENS-BERENDSEN I.: Cisplatin-DNA adduct formation in rat spermatozoa and its effect on fetal development. Cancer Lett., 2000, 3: 71–80.

    Article  Google Scholar 

  35. HOWELL S.J., SHALET S.M.: Testicular function following chemotherapy. Hum. Reprod. Update, 2001, 7: 363–369.

    Article  PubMed  CAS  Google Scholar 

  36. HUGHES C.M., LEWIS S.E.M., McKEVEY-MARTIN V.J., THOMPSON W.: A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol. Hum. Reprod., 1996, 2: 613–619.

    Article  PubMed  CAS  Google Scholar 

  37. JEGOU B., VELEZ DE LA CALLE J.F., BAUCHE F.: Protective effect of medroxyprogesterone acetate plus testosterone against radiation induced damage to the productive function of male rats and their offspring. Proc. Natl. Acad. Sci., 1991, 88: 8710–8714.

    Article  PubMed  CAS  Google Scholar 

  38. JENDERNY J., ROHRBORN G.: Chromosome analysis of human sperm. 1. First results with a modified method. Hum. Genet., 1987, 76: 385–388.

    Article  PubMed  CAS  Google Scholar 

  39. JENDERNY J., JACOBI M., RUGER A., ROHRBORN G.: Chromosome aberrations in 450 sperm complements from eight controls and lack of increase after chemotherapy in two patients. Hum. Genet., 1992, 90: 151–154.

    PubMed  CAS  Google Scholar 

  40. JOFFE M., LI Z.: Male and female factors in fertility. Am. J. Epidemiol., 1994, 140: 921–929.

    PubMed  CAS  Google Scholar 

  41. LI F.P., JAFFE M.: Progeny of chilhood cancer survivors. Lancet, 1974, 2: 704–714.

    Google Scholar 

  42. MARCHETTI F., BISHOP J.B., LOWE X., GENEROSO W.M., HOZIER J., WYROBEK A.J.: Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc. Natl. Acad. Sci. USA., 2001, 98, 3952–3957.

    Article  PubMed  CAS  Google Scholar 

  43. MARTIN R., HILDEBRAND K., YAMAMOTO J.: An increased frequency of human sperm chromosomal abnormalities after radiotherapy. Mutat. Res., 1986, 174: 219–225.

    Article  PubMed  CAS  Google Scholar 

  44. MARTIN R., RADEMAKER A., LEONARD N.: Analysis of chromosomal abnormalities in human sperm after chemotherapy by karyotyping and fluorescence in situ hybridization (FISH). Cancer Genet. Cytogenet., 1995, 80: 29–32.

    Article  PubMed  CAS  Google Scholar 

  45. MARTIN R., ERNST S., RADEMAKER A., BARCLAY L., KO E., SUMMERS N.: Analysis of human sperm karyotypes in testicular cancer patients before and after chemotherapy. Cytogenet. Cell Genet., 1997, 78: 120–123.

    PubMed  CAS  Google Scholar 

  46. MARTIN R., ERNST S., RADEMAKER A., BARCLAY L., KO E., SUMMERS N.: Chromosomal abnormalities in sperm from testicular cancer patients before and after chemotherapy. Hum. Genet. 1997, 99: 214–218.

    Article  PubMed  CAS  Google Scholar 

  47. MARTIN R., ERNST S., RADEMAKER A., BARCLAY L., KO E., SUMMERS N.: Analysis of sperm chromosome complements before, during and after chemotherapy. Cancer Genet. Cytogenet., 1999, 108: 133–136.

    Article  PubMed  CAS  Google Scholar 

  48. MAY C.A., TAMAKI K., NEUMANN R. et al.: Minisatellite mutation frequency in human sperm following radiotherapy. Mutat. Res., 2000, 453: 67–75.

    PubMed  CAS  Google Scholar 

  49. MEIROW D., SCHENKER J.: Cancer and male infertility. Hum. Reprod., 1995, 10: 2017–2022.

    PubMed  CAS  Google Scholar 

  50. MEISTRICH M.: Potential genetic risks of using semen collected during chemotherapy. Hum. Reprod., 1993, 8: 8–10.

    PubMed  CAS  Google Scholar 

  51. MONTEIL M., ROUSSEAUX S., CHEVRET E., PELLETIER R., COZZI J., SELE B.: Increased aneuploid frequency in spermatozoa from a Hodgkin’s disease patient after chemotherapy and radiotherapy. Cytogenet. Cell Genet., 1997, 76: 134–138.

    Article  PubMed  CAS  Google Scholar 

  52. MORTIMER D.: The future of male infertility management and assisted reproduction technology. Hum. Reprod. 2000, 15: 98–110.

    PubMed  Google Scholar 

  53. ROBAIRE B.: Mechanisms of action of cyclophosphamide as a male-mediated developmental toxicant. Second international conference on Male-Mediated Developmental Toxicity. Montreal, 2002,in press.

  54. ROBBINS W., MEISTRICH M., MOORE D. et al.: Chemotherapy induces transient sex chromosomal and autosomal aneuploidy in human sperm. Nature Genetics, 1997, 16: 74–78.

    Article  PubMed  CAS  Google Scholar 

  55. SAKKAS D., MARIETHOZ E., St. JOHN J.C.: Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp. Cell Res., 1999, 251: 350–355.

    Article  PubMed  CAS  Google Scholar 

  56. SAKKAS D., TOMLINSON M.: Assessment of sperm competence. Semin. Reprod. Med., 2000, 18: 133–139.

    Article  PubMed  CAS  Google Scholar 

  57. SANDERS J., HAWLEY J., LEVY W.: Pregnancies following high dose cyclophasphamide with or without high dose busulfan or total body irradiation and bone marrow transplant. Blood, 1996, 87: 3045–3052.

    PubMed  CAS  Google Scholar 

  58. SCHRADER M., MULLER M., STRAUB B., MILLER K.: The impact of chemotherapy on male fertility: a survey of the biologic basis and clinical aspects. Reprod. Toxicol., 2001, 15: 611–617.

    Article  PubMed  CAS  Google Scholar 

  59. SENTURIA Y., PECKHAM C., PECKHAM M.: Children fathered by men treated for testicular cancer. Lancet. 1985, II: 766–769.

    Article  Google Scholar 

  60. SHEN H.M., ONG C.N.: Dectection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radical Biology and Medicine. 2000, 28: 529–536.

    Article  PubMed  CAS  Google Scholar 

  61. SINGH N.P., McCPOY M.T., TICE R.R., SCHNEIDER E.L.: A simple technique for quantification of low levels of DNA damage in individual cells. Exp. Cell. Res., 175: 184–191.

  62. SLOTER E.D., LOWE X., MOORE D.H., NATH J., WYROBEK A.J.: Multicolor FISH analysis of chromosomal breaks, duplications, deletions, and numerical abnormalities in the sperm of healthy men. Am. J. Hum. Genet., 2000, 67: 862–872.

    Article  PubMed  CAS  Google Scholar 

  63. SUN J.G., JURISICOVA A., CASPER R.F.: Detection of deoxyribonucleic acid fragmentation in human sperm: correlation within vitro fertilization. Biol. Reprod., 1997, 56: 602–607.

    Article  PubMed  CAS  Google Scholar 

  64. TRASLER J.M., HALES B.F., ROBAIRE B.: Chronic low dose cyclophosphamide treatment of adult male rats: effect on fertility, pregnancy outcome and progeny. Biol. Reprod., 1986, 34, 275–283.

    Article  PubMed  CAS  Google Scholar 

  65. VELEZ DE LA CALLE J.F., JEGOU B.: Prevention by a contraception of anti-cancer drug induced sterility and genotoxicity in male rats. Cancer Res., 1990, 50: 1308–1315.

    PubMed  CAS  Google Scholar 

  66. WYROBEK A.J., ALHBORN T., BALHORN R., STANKER L., PINKEL D.: Fluorescence in situ hybridization to Y chromosome in decondensed human sperm nuclei. Molec. Reprod. Develop., 1990, 27: 200–208.

    Article  CAS  Google Scholar 

  67. ZHENG N., MONCKTON D.G., WILSON G., et al.: Frequency of minisatellite repeat number changes at the MS205 locus in human sperm before and after cancer chemotherapy. Environ. Mol. Mut., 2000, 36: 134–145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Bujan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujan, L., De Mas, P. Génotoxicité des chimiothérapies et radiothérapies: Quelles sont les conséquences pour le spermatozoïde humain?. Androl. 12, 284–294 (2002). https://doi.org/10.1007/BF03035141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03035141

Mots clés

Key Words