Skip to main content

La contraception masculine

Male contraception

Resume

Des méthodes de contraception masculine sont actuellement utilisables, en particulier les méthodes mécaniques comme le préservatif, dont le taux d’échec est important, ou la vasectomie qui présente un caractère irréversible. De plus, ces méthodes ne sont pas acceptées par tous les couples.

Les méthodes hormonales sont basées sur la suppression réversible de la sécrétion des gonadotrophines (LH et FSH) et sur l’inhibition des stéroïdes intra-testiculaires et de la production des spermatozoïdes. En 1990 et 1996, l’OMS a publié les résultats de deux études qui montrent que la testostérone administrée par injection peut être utilisée comme moyen de contraception. Ces études démontrent en effet pour la première fois que si une méthode hormonale est en mesure de provoquer une azoospermie ou à défaut une oligozoospermie sévère, elle représente une méthode contraceptive efficace.

Une autre approche possible consiste à utiliser une combinaison de progestatifs ou d’autres hormones capables de supprimer la sécrétion des gonadotrophines avec les androgènes. L’association permet une meilleure suppression de la spermatogenèse. Les quantités d’androgènes administrées peuvent ainsi être réduites pour diminuer leurs effets indésirables à long terme. Les études sont en cours pour déterminer quelles sont les associations les plus efficaces et les moins dangereuses.

Les antagonistes du GnRH permettent d’obtenir la suppression de l’action du GnRH et ainsi de bloquer la spermatogenèse.

Les agents agissant directement sur la spermatogenèse sont souvent très toxiques avec une irréversibilité de l’atteinte de la spermatogenèse qui les rend difficilement utilisables dans le cadre d’une contraception.

La vaccination contraceptive et, en particulier, l’immunisation avec des protéines impliquées dans l’interaction gamétique, constitue une approche très attractive. Une telle idée n’est pas nouvelle; en effet, plusieurs essais d’immunocontraception, utilisant des modèles animaux ont été rapportés ces dernières années. Toutefois, les résultats de ces études restent plutôt décevants. Cela peut s’expliquer d’abord parce que l’immunoneutralisation d’une seule protéine semble insuffisante pour permettre une diminution significative de la fertilité, et ensuite parce que des taux d’anticorps élevés dans le sérum ne sont corrélés ni aux taux observés dans le tractus génital ni à l’efficacité contraceptive.

Abstract

Currently available methods of male contraception include condoms and vasectomy, but condoms have a high failure rate and vasectomy is an irreversible method. These methods are also not accepted by all couples.

Hormonal methods are based on reversible suppression of gonadotrophin (both LH and FSH) and inhibition of intra-testicular steroid and sperm production. In 1990 and 1996, the WHO published results from two studies using testosterone injections as a method of hormonal contraception. These studies demonstrated, for the first time, that if a hormonal method is able to induce azoospermia or at least severe oligozoospermia, it could constitute an effective method of contraception.

Another possible approach consists of using a combination of progestins or other gonadotropin inhibitors together with androgens to ensure more effective suppression of spermatogenesis. The dose of androgens can be lowered to decrease the risk of long-term adverse effects. Ongoing studies are designed to determine the safest and most effective combinations of androgens and progestins. GnRH antagonists interfere with the action of GnRH and suppress gonadotropins and therefore spermatogenesis.

Agents acting directly on the testis are often very toxic and frequently induce irreversible effects on spermatogenesis and therefore cannot be used for contraception.

Immunocontraception, particularly targeting of antibodies to gamete-specific antigens involved in sperm-egg binding and fertilisation, constitutes a very attractive approach. This is not a new idea, as several immunocontraception trials, using animal model systems, have been reported over recent years. However, the results of these studies have been largely disappointing because immunoneutralisation of a single, gamete-specific antigen appears to be insufficient to induce a significant reduction in fertility and secondly, although systemic immunisation regimes may lead to high serum antibody levels, these levels do not correlate with specific antibody levels in the reproductive tract or with contraceptive efficacy.

References

  1. 1.

    ADOYO P.A., LEA I.A., RICHARDSON R.T. et al.: Sequence and characterisation of the sperm protein Sp17 from the baboon. Mol. Reprod. Dev., 1997, 47: 66–71.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    ALMEIDA E.A.C., HUOVILLA A.P.J., SUTHERLAND A.E. et al.: Mouse egg integrin a6b1 functions as a sperm receptor. Cell, 1995, 81: 1095–1104.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    ANAWALT B.D., HERBST B.D., HERBST K.L. et al.: Desogestrel plus testosterone effectively suppresses spermatogenesis but also causes modest weight gain and high density lipo protein suppression. Fertil. Steril., 2000, 14: 704–714.

    Google Scholar 

  4. 4.

    ANDERSON D.J., JOHNSON P.M., ALEXANDER N.J. et al.: Monoclonal antibodies to human trophoblast and sperm antigens: report of two WHO sponsored wordshops. J. Reprod. Immunol., 1987, 10: 231–257.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    ANDERSON R.A., VAN DER SPUY Z.M., DADA O.A. et al.: Investigation of hormonal male contraception in African men: suppression of spermatogenesis by oral desogestrel with depot testosterone. Hum. Reprod., 2002; 17: 2869–2877.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    ANDERSON R.A., WALLACE A.M., SATTAR N. et al.: Evidence for tissue selectivity of the synthetic androgen 7 alphamethyl-19-nortestosterone in hypogonadal men. J. Clin. Endocrinol. Metab., 2003, 88: 2784–2793.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    ANDERSON R.A., WALLACE A.M., WU F.C.W.: Comparison between testosterone enanthate-induced azoospermia and oligozoospermia in a male contraceptive study. Higher 5α reductase activity in oligozoospermic men administered supraphysiological doses of testosterone. J. Clin. Endocrinol. Metab., 1996, 81: 902–908.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    ANONYMOUS: Progress in Human Reproductive Research, World Health Organisation, Geneva, 1992, 23: 4.

  9. 9.

    BAGATELL C.J., MATSUMOTO A.M., CHRISTENSEN R.B. et al.: Comparison of a gonadotropin releasing-hormone antagonist plus testosterone (T) versus T alone as potential male contraceptive regimens. J. Clin. Endocrinol. Metab., 1993, 77: 427–432.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    BARKER H.L., PERRY A.C.F., JONES, R., HALL L.: Sequence and expression of a monkey testicular transcript encoding Tmdc i, a novel member of the metalloproteinase-like, disintegrin-like, cysteine-rich (MDC) protein family. Biochem. Biophys. Acta, 1994, 1218: 429–431.

    PubMed  CAS  Google Scholar 

  11. 11.

    BEATON S., HAVE, J., CLEARY A., BRADLEY M.P.: Cloning and partial characterization of the cDNA encoding the fox sperm protein FSA-Acr. 1 with similarities to the SP-10 antigen. Mol. Reprod. Dev., 1995, 40: 242–252.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    BEBB R.A., ANAWALT B.D., CHRISTIANSEN R.B. et al.: Combined administration of levonorgestrel and testosterone induces more rapid and effective suppression of spermatogenesis than testosterone alone: A promising male contraceptive approach. J. Clin. Endocrinol. Metab., 1996, 81: 757–762.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    BEHRE H.M., ABSHAGEN K., OETTEL M. et al.: Intramuscular injection of testosterone undecanoate for the treatment of male hypogonadism: phase I studies. Eur. J. Endocrinol., 1999, 140: 414–419.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    BEHRE H.M., NIESCHLAG E.: Testosterone Buciclate in hypogonadal man: pharmacokinetics and pharmacodynamics of the new long acting androgen ester. J. Clin. Endocrinol. Metab., 1992, 75: 1204–1210.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    BEHRE H.M., BAUS S., KLIESCH S. et al.: Potential of testosterone buciclate for male contraception: endocrine differences between responders and non-responders. J. Clin. Endocrinol. Metab., 1995; 80: 2394–2403.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    BEHRE H.M., NASHAN D., HBERT W., NIESCHLAG E.: Depot gonadotropin-releasing hormone agonist blunts the androgen-induced suppression of spermatogenesis in a clinical trial of male contraception. J. Clin. Endocrinol. Metab., 1992, 74: 84–90.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    BEHRE H.M., KLEIN B., STEINMEYER E. et al.: Effective suppression of luteinizing hormone and testosterone by single doses of the new gonadotropin-releasing hormone antagonist cetrorelix (SB-75) in normal men. J. Clin. Endocrinol. Metab., 1992, 75: 393–398.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    BERUBE B., SULLIVAN R.: Inhibition ofin vivo fertilisation of male hamsters against a 26-KDa sperm glycoprotein. Biol. Reprod., 1994, 51: 1255–1263.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    BHASIN S., HEBER D., STEINER B.S. et al.: Hormonal effects of gonadotropin-releasing hormone (GnRH) agonist and androgen. J. Clin. Endocrinol. Metab., 1985, 60: 998–1003.

    PubMed  CAS  Google Scholar 

  20. 20.

    BHASIN S., HEBER D., STEINER B. et al.: Hormonal effects of GnRH agonist in the human male: II. Testosterone enhances gonadotrophin suppression induced by GnRH agonist. Clin. Endocrinol., 1984, 20: 119–128.

    CAS  Article  Google Scholar 

  21. 21.

    BLACK R.A., RAUCH C.T., KOZLOSKY C.J. et al.: A metalloproteinase disintegrin that releases tumour-necrosis factor a from cells. Nature, 1997, 385: 729–733.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    BLOBEL C.P., MYLES D.G., PRIMAKOFF P., WHITE J.M.: Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilisation competence. J. Cell Biol., 1990, 111: 69–78.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    BLOBEL C.P., WOLFSBERG T.G., TURCK C.W. et al.: A potential fusion peptide and an intefrin ligand domain in a protein active in sperm-egg fusion. Nature, 1992, 356: 248–252.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    RONSON R.G., COOPER G., ROSENFIELD D.: Sperm antibodies: their role in infertility. Fertil. Steril., 1984, 42: 171–182.

    Google Scholar 

  25. 25.

    BUJAN L., MIEUSSET R.: Contraception masculine par hyperthermie. Contracept. Fertil. Sex., 1995, 23: 611–614.

    PubMed  CAS  Google Scholar 

  26. 26.

    CHENG A., LE T., PALACIOS M. et al.: Sperm-recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3. J. Cell Biol., 1994, 125: 867–878.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    HO C., O’DELL BUNCH D., FAURE J.E., GOULDING E.H. et al.: Fertilization defects in sperm from mice lacking fertilin b. Science, 1998, 281: 1857–1859.

    Article  Google Scholar 

  28. 28.

    COHEN D.J., MUNUCE M.J., CUASNICU P.S.: Mammalian sperm-egg fusion: the development of rat oolema fusibility during oogenesis involves the appearance of binding sites for sperm protein ‘DE’. Biol. Reprod., 1996, 55: 200–206.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    COONROD S.A., HERR J.C., WESTHUSIN M.E.: Inhibition of bovine fertilizationin vitro by antibodies to SP-10. J. Reprod. Fertil., 1996, 107: 287–297.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    COUTINHO E.M.: Gossypol: a contraceptive for men. Contraception, 65, 2002; 259–263.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    COX T.M., AERTS J.M., ANDRIA G. et al.: The role of the iminosugar N-butyldeoxynojirimycin (miglustat) in the management of type I (non-neuronopathic) Gaucher disease: a position statement. J. Inherit. Metab. Dis., 2003, 26: 513–526.

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    CUASNICU P.S., CONESA D., ROCHWERGER L.: Potential contraceptive use of an epididymal protein that participates in fertilisation. Gamete interaction. Prospects for immunocontraception. Wiley-Liss, 1990: 143–153.

  33. 33.

    CUNNINGHAM G.R., SILVERMAN V.E., KOHLER D.O.: Clinical evaluation of testosterone enanthate for induction and maintenance of reversible azoospermia. In Patanelli D.J. ed. Hormonal control of male fertility. Bethesda. US Dhew Publication (NIH), No 78-1097, 1978: 71–92.

  34. 34.

    ECKARDSTEIN S.V., SCHMIDT A., KAMISCHKE A. et al.: CAG repeat length in the androgen receptor gene and gonadotrophin suppression influence the effectiveness of hormonal male contraception. Clin. Endocrinol. (Oxford), 2002, 57: 647–655.

    CAS  Article  Google Scholar 

  35. 35.

    ELLERMAN D.A., BRANTUA V.S., MARTINEZ S.P. et al.: Potential contraceptive use of epididymal proteins: immunization of male rats with epididymal protein D inhibits sperm fusion ability. Biol. Reprod., 1998, 59: 1029–1036.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    ENDERS G.: Clinical approaches to male infertility with a case report of possible nifedipine-induced sperm dysfunction. J. Am. Board Fam. Pract., 1997, 10: 131–136.

    PubMed  CAS  Google Scholar 

  37. 37.

    ENGLISH K.M., STEEDS R.P., JONES T.H. et al.: Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: A randomized, doubleblind, placebo-controlled study. Circulation, 2000, 102: 1906–1911.

    PubMed  CAS  Google Scholar 

  38. 38.

    EVANS J.P., SCHULTZ R.E.M., KOPF G.S.: Identification and localization of integrin subunits in oocytes and eggs of the mouse. Mol. Reprod. Dev., 1995, 40: 211–220.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    EWING L.: Effects of testosterone and estradiol, silastic implants, on spermatogenesis in rats and monkeys. In: Patanelli D.J. ed. Hormonal Control of Male Fertility. Bethesda, US DHEW Publication (NIH), No 78-1097 1978: 173–194.

  40. 40.

    FERRO V., STIMSON W.H.: Immunoneutralisation of gonadotrophhin-releasing hormone: a potential treatment for oestrogen-dependent breast cancer. Eur. J. Cancer., 1997, 33: 1467–1478.

    Article  Google Scholar 

  41. 41.

    FOCARELLI R., GIUFFRIDA A., CAPPARELLI S. et al.: Specific localization in the equatorial region of gp20, a 20KDa sialyloglycoprotein of the capacitated human spermatozoon acquired during epididymal transit which is necessary to penetrate zona-free hamster eggs. Mol. Hum. Reprod., 1998, 4: 119–125.

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    FORD W.C., HARRISON A., WAITES G.M.: Effects of the optical isomers of alpha-chlorohydrin on glycolysis by ram testicular spermatozoa and the fertility of male rats. J. Reprod. Fertil., 1977, 51: 105–109.

    PubMed  CAS  Google Scholar 

  43. 43.

    FORD W.C., WAITES G.M.: The control of male fertility by 6-chloro-6-deoxysugars. Reprod. Nutr. Dev., 1980, 20: 1101–1109.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    FRAYNE J., JURY J.A., BARKER H.L., HALL L.: Rat MDC family of proteins: sequence analysis, tissue distribution and expression in prepubertal and adult rat testis. Mol. Reprod. Dev., 1997, 48: 159–167.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    FRAYNE J., JURY J.A., BARKER H.L. et al.: Macaque MDC family of proteins: sequence analysis, tissue distribution and processing in the male reproductive tract. Mol. Hum. Reprod., 1998, 4: 429–437.

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    FRAYNE J., HALL L.: The gene for the human tMDC I protein is non-functional; implications for its proposed role in mammalian sperm-egg recognition. Biochem. J., 1998, 334: 171–176.

    PubMed  CAS  Google Scholar 

  47. 47.

    FREEMERMAN A.J., WRIGHT R.M., FLICKINGER C.J., HERR J.C.: Cloning and sequencing of baboon and cynomolgus monkey intra-acrosomal protein Sp-10: homology with huma, Sp-10 and a mouse sperm antigen (MSA-63). Mol. Reprod. Dev., 1993, 34: 140–148.

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    FUSI F.M., VIGNALI M., GAILIT J., BRONSON R.A.: Mammalian oocytes exhibit specific recognition of the RGD (Arg-Gly-Asp) tripeptide and express oolemmal integrins. Mol. Reprod. Dev., 1993, 36: 212–219.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    GAO Z., GARBERS DL: Species diversity in the structure of Zonadhesin, a sperm-specific membrane protein containing multiple cell adhesion molecule-like domains. J. Biol. Chem. 1998, 273: 3415–3421.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    GONZALO I.T., SWERDLOFF R.S., NELSON A.L. et al.: Levonorgestrel implants (Norplant II) for male contraception clinical trials: combination with transdermal and injectable testosterone. J. Clin. Endocrinol. Metab., 2002, 87: 3562–3572.

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    GOODWIN L.O., KARABINUS D.S., PERGOLIZZI R.G., BENOFF S.: L-type voltage dependent calcium channel alpha-1C subunit mRNA is present in ejaculated human spermatozoa. Mol. Hum. Reprod., 2000, 6: 127–136.

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Gu Y.Q., WANG X.H., XU D. et al.: A multicenter contraceptive efficacy study of injectable testosterone undecanoate in healthy Chinese men. J. Clin. Endocrinol. Metab., 2003, 88: 559–61, 562–8.

    Article  CAS  Google Scholar 

  53. 53.

    GUPTA S.K., ALVES K., O’NEIL P. et al.: Molecular cloning of the human fertilin beta subunit. Biochem. Biophys. Res. Commun., 1996, 224: 318–326.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    HALL J.C., TUBBS C.E.: Purification and characterisation of protein D/E, a putative sperm-binding protein involved in fertilisation. Prep. Biochem. Biotechnol., 1997, 27: 239–251.

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    HAMM L.: Testosterone proprionate in the treatment of angina pectoris. J. Clin. Endocrinol., 1942; 2: 325–328.

    Google Scholar 

  56. 56.

    HANDELSMAN D.J., CONWAY A.J., BOYLAN L.M.: Suppression of human spermatogenesis by testosterone implants in man. J. Clin. Endocrinol. Metab., 1992, 75: 1326–1332.

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    HANDELSMAN D.I., CONWAY A.J., HOWE C.J., et al.: Establishing the minimum effective dose and additive effects of depot progestin in suppression of human spermatogenesis by a testosterone depot. J. Clin. Endocrinol. Metab., 1996, 81: 4113–4121.

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    HANDELSMAN D.J., WISHART S., CONWAY AJ.: Oestradiol enhances testosterone-induced suppression of human spermatogenesis. Hum. Reprod., 2000, 15: 672–679.

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    HANDELSMAN D.J.: The safety androgens: prostate and cardiovascular disease. In: Wang C. ed. Male Reproductive Function. Boston, Kluwer Academic Publisher, 1999: 173–189.

    Google Scholar 

  60. 60.

    HARDY D.M., GARBERS D.L.: Species-specific binding of sperm proteins to the extracellular matrix (zona pellucida) of the egg. J. Biol. Chem., 1994, 269: 19000–19004.

    PubMed  CAS  Google Scholar 

  61. 61.

    HARDY D.M., HOLLAND M.K.: Cloning and expression of recombinant rabbit fertilin. Mol. Reprod. Dev., 1996, 45: 107–116.

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    HERBST K.L., AMORY J.K., BRUNZELL J.D. et al.: Testosterone administration to men increases hepatic lipase activity and decreases HDL and LDL size in 3 wk. Am. J. Physiol. Endocrinol. Metab., 2003, 284: E1112–1118.

    PubMed  CAS  Google Scholar 

  63. 63.

    HERR J.C., FLICKINGER C.J., HOMYK M. et al.: Biochemical and morphological characterization of the intra-acrosomal antigen SP10 from human sperm. Biol. Reprod., 1990, 42: 181–193.

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    HERR J.C., WRIGHT R.M., JOHN E. et al.: Identification of human acrosomal antigen SP10 in primates and pigs. Biol. Reprod., 1990, 42: 377–382.

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    HIKIM A.P., WANG C., LEUNG A., SWERDLOFF R.S.: Involvement of apoptosis in the induction of germ cell degeneration in adult rat after gonadotropin-releasing hormone antagonist treatment. Endocrinology, 1995, 136: 2770–2775.

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    HIKIM A.P., LUE Y., YAMAMOTO C.M. et al.: Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology, 2003, 144: 3167–3175.

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    HIKIM A.P., LUE Y.H., WANG C. et al.: Post-testicular antifertility action of triptolide in the male rat: evidence for severe impairment of cauda epididymal sperm ultrastructure. J. Androl., 2000, 21: 431–437.

    PubMed  CAS  Google Scholar 

  68. 68.

    HOU S.T., MA A., JONES R., HALL L.: Molecular cloning and characterisation of rat sperm surface antigen 2B1, a glycoprotein implicated in sperm-zona binding. Mol. Reprod. Dev., 1996, 45: 193–203.

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    HOWARD L., LU X., MITCHELL S. et al.: Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem. J., 1996, 317: 45–50.

    PubMed  CAS  Google Scholar 

  70. 70.

    HUNNICUTT G.R., MAHAN K., LATHROP W. et al.: Sructural relationship of sperm soluble hyaluronidase to the sperm membrane protein PH-20. Biol. Reprod., 1996, 54: 1343–1349.

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    JIMENEZ C., SION B., GRIZARD G. et al.: Characterization of a monoclonal antibody to a human intra-acrosomal antigen that inhibits fertilization. Biol. Reprod., 1994, 51: 1117–1125.

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    JOHNSTON D.S., WRIGHT W.W., SHAPER, J.H. et al.: Murine sperm-zona binding, a fucosyl residue is required for a high affinity sperm-binding ligand. J. Biol. Chem., 1998, 273: 1888–1895.

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    JONES R.D., MALKIN C.J., CHANNER K.S., JONES T.H.: Low levels of endogenous androgens increase the risk of atheroscleros in elderly men: further supportive data. J. Clin. Endocrinol. Metab., 2002, 87: 3632–3639.

    Article  Google Scholar 

  74. 74.

    JURY J.A., FRAYNE J., HALL L.: The human fertilin a gene is non-functional: implications for its porposed role in fertilisation. Biochem. J., 1997, 321: 577–581.

    PubMed  CAS  Google Scholar 

  75. 75.

    KAMISCHKE A., PLÖGER D., VENHERM S. et al.: Intramuscular testosterone undecanoate with or without oral levonorgestrel: a randomized placebo controlled clinical trial for male contraception. Clin. Endocrinol. (Oxford), 2000, 53: 351–358.

    CAS  Article  Google Scholar 

  76. 76.

    KAMISCHKE A., PLOGER D., VENHERM S. et al.: Intramuscular testosterone undecanoate with or without oral levonorgestrel: a randomized placebo-controlled feasibility study for male contraception. Clin. Endocrinol. (Oxford), 2000, 53: 43–52.

    CAS  Article  Google Scholar 

  77. 77.

    KAMISCHKE A., PLOGER D., VENHERM S. et al.: Intramuscular testosterone undecanoate with or without oral levonorgestrel: a randomized placebo-controlled feability study for male contraception. Clin. Endocrinol. (Oxford), 2000, 53: 43–52.

    CAS  Article  Google Scholar 

  78. 78.

    KAMISCHKE A., HEUERMANN T., KRUGER K. et al.: An effective hormonal male contraception using testosterone undecanoate with oral or injectable norethisterone preparations. J. Clin. Endocrinol. Metab., 2002, 87: 530–539.

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    KIRKMAN-BROWN J.C., BARRATT C.L., PUBLICOVER S.J.: Nifedipine reveals the existence of two discrete components of the progesterone-induced [Ca2+]i transient in human spermatozoa. Dev. Biol., 2003, 259: 71–82.

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    KONG M., RICHARSON R.T., WIDGREN E.E., O’RAND M.G.: Sequence and localisation of the mouse sperm autoantigenic protein Sp17. Biol. Reprod., 1995, 53: 579–590.

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    KRATZSCHMAR J., LUM L., BLOBEL C.P.: Metargidin, a membrane-anchored metallo-protease-disintegrin protein with an RGD integrin binding sequence. J. Biol. Chem., 1996, 271: 4593–4596.

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    KUMAR N., DIDOLKAR A.K., MONDER C. et al.: The biological activity of 7 alpha-methyl-19-nortestosterone is not amplified in male reproductive tract as is that of testosterone. Endocrinology, 1992, 130: 3677–3683.

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    KURTH B.E., WESTON C., REDDI P. et al.: Oviductal antibody response to a defined recombinant sperm antigen in macaques. Biol. Reprod., 1997, 57: 981–989.

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    LATHROP W.F., CARMICHAEL E.P., MYLES D.G., PRIMAKOFF P.: Isolation and characterization of Cdna coding for the mouse homologue of the guinea-pig sperm protein PH-20. J. Cell Biol., 1990, 115 (suppl.): 462a.

    Google Scholar 

  85. 85.

    LATHROP W.F., CARMICHAEL E.P., MYLES D.G., PRIMAKOFF P.: Cdna cloning reveals the molecular structure of a sperm surface protein, PH-20, involved in sperm-egg adhesion and the wide distribution of its gene among mammals. J. Cell Biol., 1990, 111: 2939–2949.

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    LEA I.A., KURTH B., O’RAND M.G.: Immune response to immunisation with sperm antigens in the macaque oviduct. Biol. Reprod., 1998, 58: 794–800.

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    LEA I.A., RICHARDSON R.T., WIDGREN E.E., O’RAND M.G.: Cloning and sequencing of cDNAs encoding the human sperm protein Sp17. Biochem. Biophys. Acta, 1996, 1307: 263–266.

    PubMed  Google Scholar 

  88. 88.

    LEA I.A., VAN LIEROP M.J.C., WIDGREN E.E. et al.: A chimeric sperm peptide enduces antibodies and strain-specific reversible infertility in mice. Biol. Reprod., 1998, 59: 527–536.

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    LEVEVRE A., RUIZ C.M., CHOKOMIAN S., DUQUENNE C.: Characterisation and isolation of SOB2, a sperm protein with a potential role in oocyte membrane binding. Mol. Hum. Reprod., 1997, 3: 507–516.

    Article  Google Scholar 

  90. 90.

    LEMAIRE L., JOHNSON K.R., BAMMER S. et al.: Chromosomal assignment of three novel mouse genes expressed in testicular cells. Genomics, 1994, 21: 409–414.

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    LESSER M.A.: Testosterone propionate therapy in one hundred cases of angina pectoris. J. Clin. Endocrinol., 1946, 19: 549–557.

    Google Scholar 

  92. 92.

    LEVINE R.J., BORDSON B.L., MATHEW R.M. et al.: Deterioration of semen quality during summer in New Orleans. Fertil. Steril., 1998, 49: 900–907.

    Google Scholar 

  93. 93.

    LEVINE R.J., MATHEW R.M., CHENAULT C.B. et al.: Differences in the quality of semen in outdoor workers during summer and winter. New Engl. J. Med., 1990, 323: 12–16.

    PubMed  CAS  Google Scholar 

  94. 94.

    LIEVANO A., SANTI C.M., SERRANO CJ. et al.: T-type Ca2+ channels and alpha 1E expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett, 1996, 388: 150–154.

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    LIN Y., KIMMEL L.H., MYLES D.G., PRIMAKOFF P.: Molecular cloning of the human and monkey sperm surface protein PH-20. Proc. Natl Acad. Sci. USA, 1993, 90: 10071–10075.

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    LIN Y., MAHAN K., LATHROP W.F. et al.: A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. J. Cell Biol., 1994, 125: 1157–1163.

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    LINDER B., BAMMER S., HEINLEIN U.A.O.: Delayed translation and post-translational processing of cyritestin, an integral transmembrane protein of the mouse acrosome. Exp. Cell Res., 1995, 221: 66–72.

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    LIU G.Z.: Clinical studies of gossypol as a male contraceptive. Reproduction, 1987, 5: 189–192.

    Google Scholar 

  99. 99.

    LIU G.Z., LYLE C.K., C.A.O. J.: Trial of gossypol as a male contraceptive. In: Segal S. J. ed. Gossypol: a potential contraceptive for men. New York, Plenum Press, 1985: 9–16.

    Google Scholar 

  100. 100.

    LIU M.S., YANG Y., PAN J. et al.: Purification of an acrosomal antigen recognised by a monoclonal antibody and infertility effects of isoimmune serum. Int. J. Androl., 1989, 12: 451–463.

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    LOHIYA N.K., MANIVANNAN B., MISHRA P.K. et al.: Chloroform extract of Carica papaya seeds induces long-term reversible azoospermia in langur monkey. Asian J. Androl., 2002, 4: 17–26.

    PubMed  CAS  Google Scholar 

  102. 102.

    LOPEZ-GONZALEZ I., OLAMENDI-PORTUGAL T., De La VEGA-BELTRAN J.L. et al.: Scorpion toxins that block T-type Ca2+ channels in spermatogenic cell inhibit the sperm acrosome reaction. Biochem. Biophys. Res. Commun., 2003, 300: 408–414.

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    LU Q., SHUR B.D.: Sperm from β1,4-galactosyltransferasenull mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly. Dev., 1997, 124: 4121–4131.

    CAS  Google Scholar 

  104. 104.

    LUE Y.H., HIKIM A.P., WANG C. et al.: Triptolide: a potential male contraceptive. J. Androl., 1998, 19: 479–486.

    PubMed  CAS  Google Scholar 

  105. 105.

    LUE Y.H., HIKIM A.P., SWERDLOFF R.S. et al.: Single exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular testosterone on stage specificity. Endocrinology, 1999, 140: 1709–1717.

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    LUE Y.H., LASLEY B.L., LAUGHLIN L.S. et al.: Mild testicular hyperthermia induces profound transitional spermatogenic suppression through increased germ cell apoptosis in adult cynomolgus monkeys (Macaca fascicularis). J. Androl., 2002; 23: 799–805.

    PubMed  Google Scholar 

  107. 107.

    MADHUMITA S., PARAMITA G., BIYUT B. et al.: The reversible antifertility effect of Piper betle Linn on Swiss albino male mice. Contraception, 2000, 62: 271–274.

    Article  Google Scholar 

  108. 108.

    McLAUGHLIN E.A., FRAYNE J., BARKER H.L. et al.: Cloning and sequence analysis of rat fertilin a and b-developmental expression, processing and immunolocalisation. Mol. Hum. Reprod., 1997, 3: 801–809.

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    MERIGGIOLA M.C., BREMNER W.J., PAULSEN C.A. et al.: A combinated regimen of cyproterone acetate and testosterone enanthate as a potentially high effective male contraceptive. J. Clin. Endocrinol. Metab., 1996, 81: 3018–3023.

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    MERIGGIOLA M.C., BREMNER W.J., CONSTANTINO A. et al.: Low dose of cyproterone acetate and testosterone enanthate for contraception in men. Hum. Reprod., 1998, 13: 1225–1229.

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    MIEUSSET R., BUJAN L., MANSAT A. et al.: Hyperthermia and human spermatogenesis: enhancement of the inhibitory effect obtained by ‘artificial cryptorchidism’. Int. J. Androl., 1987, 10: 571–580.

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    MIEUSSET R., BUJAN L., MONDINAT C. et al.: Association of scrotal hyperthermia with impaired spermatogenesis in infertile men. Fertil. Steril., 1987, 48: 1006–1011.

    PubMed  CAS  Google Scholar 

  113. 113.

    MIEUSSET R., BUJAN L.: The potential of mild testicular heating as a safe effective and reversible contraceptive method for men. J. Androl., 1994, 17: 186–191.

    CAS  Article  Google Scholar 

  114. 114.

    MILLER L.A., JOHN B.E., KILLIAN G.J.: Immunocontraception of white-tailed deer with GnRH vaccine. Am. J. Reprod. Immunol., 2000, 44: 262–274.

    Article  Google Scholar 

  115. 115.

    MOUDGAL N.R., DIGHE R.R.: Is FSH-based contraceptive vaccine a feasible proposition for the human male? Reprod. Immunol., 1999, 346–357.

  116. 116.

    National Coordinating Group on Male Infertility Agents.: Gossypol: a new antifertility agent for males. China Med. J. (New Series), 1978, 4: 417.

    Google Scholar 

  117. 117.

    NAZ R.K.: The fertilisation antigen (FA-1) causes reduction of fertility in actively immunised female rabbits. J. Reprod. Immunol., 1987, 11: 117–133.

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    NAZ R.K., BRAZIL C., OVERSTREET J.: Effects of antibodies to sperm surface fertilisation antigen-1 on human spermzona pellucida interaction. Fertil. Steril., 1992, 57: 1304–1310.

    PubMed  CAS  Google Scholar 

  119. 19.

    NAZ R.K.: Application of sperm antigens in immunocontraception. Front. Biosci., 1996, 1: 87–95.

    Google Scholar 

  120. 120.

    NAZ R., ZHU X.: Molecular cloning and sequencing of cDNA encoding for a novel testis-specific antigen. Mol. Reprod. Dev., 1997, 48: 449–457.

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    NAZ R., ZHU X.: Recombinant fertilisation antigen-1 causes reduction a contraceptive effect in actively immunized mice. Biol. Reprod., 1998, 59: 1095–1100.

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    NEGRO-VILAR A.: New progestins and potential actions. J. Soc. Gynecol. Investigation, 2000, 7 (1 Suppl): S53–54.

    CAS  Article  Google Scholar 

  123. 123.

    NIDHI S., JACOB D.: Assessment of reversible contraceptive efficacy of methanol extract ofMentha arvensis L. leaves in male albino mice. J. Ethnopharmacol., 2002, 80: 9–13.

    Article  Google Scholar 

  124. 124.

    OONK H.B., TURKSTRA J.A., SCHAAPER W.M. et al.: New GnRH-like peptide construct to optimize efficient immunocastration of male pigs by immunoneutralisation of GnRH. Vaccine, 1998, 16: 1074–1082.

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    O’HERN P.A., BAMBRA C.S., ISAHAKIA M., GOLDBERG E.: Reversible contraception in female baboons immunized with a synthetic epitope of sperm-specific lactate dehydrogenase. Biol. Reprod., 1995, 52: 331–339.

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    O’HERN P.A., LIANG Z.G., BAMBRA C.S., GOLDBERG E.: Colinear synthesis of an antigen-specific B-cell epitope with a ‘promiscuous’ tetanus toxin T-cell epitope: a synthetic peptide immunocontraceptive. Vaccine, 1997, 15: 1761–1766.

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    O’RAND M.G., PORTER J.P.: Purification of rabbit sperm autoantigens by preparative SDS gel electrophoresis: Amino acid and carbohydrate content of RSA-1. Biol. Reprod., 1982, 27: 713–721.

    PubMed  CAS  Article  Google Scholar 

  128. 128.

    O’RAND M.G.: Inhibition of fertility and sperm-zona binding by antiserum to the rabbit sperm autoantigen. Biol. Reprod., 1981, 25: 621–628.

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    O’RAND M.G., IRONS G.P., PORTER J.P.: Monoclonal antibodies to rabbit spermautoantigens I. Inhibition ofin vitro fertilisation and localisation on the egg. Biol. Reprod., 1984, 30: 721–729.

    PubMed  CAS  Article  Google Scholar 

  130. 130.

    O’RAND M.G., WIDGREN E.E., FISHER S.J.: Characterisation of the rabbit sperm membrane autoantigen, RSA, as a lectin-like zona binding protein. Dev. Biol., 1988, 129: 231–240.

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    PATANELLI D.J.: Hormonal control of male fertility. Bethesda, US DHEW Publication No 78-1097 (NIH), 1978.

  132. 132.

    PAVLOU S.N., WAKEFIELD G.B., ISLAND D.P. et al.: Suppression of pituitary-gonadal function by a potent new luteinizing hormone-releasing hormone antogonist in normal men. J. Clin. Endocrinol. Metab., 1987, 64: 931–936.

    PubMed  CAS  Google Scholar 

  133. 133.

    PERRY A.C.F., GICHUHI P.M., JONES R., HALL L.: Cloning and analysis of monkey fertilin reveals novel a subunit isoforms. Biochem. J., 1995, 307: 843–850.

    PubMed  CAS  Google Scholar 

  134. 134.

    PRIMAKOFF P., HYATT H., MYLES D.G.: A role for the migrating sperm surface antigen PH-20 in guinea-pig sperm binding to the egg zona pellucida. J. Cell Biol., 1985, 101: 2239–2244.

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    PRIMAKOFF P., COWAN A., HYATT H. et al.: Purification of the guinea-pig sperm PH-20 antigen and detection of a sitespecific endoproteolytic activity in sperm preparations that cleaves PH-20 into two disulfide-linked fragments. Biol. Reprod., 1988, 38: 921–934.

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    PRIMAKOFF P., LATHROP W., WOOLMAN L. et al.: Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature, 1988, 335: 543–546.

    PubMed  CAS  Article  Google Scholar 

  137. 137.

    QIAN S.Z., ZHONG C.Q., XU N., XU Y.: Antifertility effect ofTripterygium wilfordii, in men. Adv. Contracept., 1986, 2: 253–254.

    Google Scholar 

  138. 138.

    QIAN S.Z.:Tripterygium wilfordii, a Chinese herb effective in male fertility regulation. Contraception, 1987, 36: 335–345.

    PubMed  CAS  Article  Google Scholar 

  139. 139.

    QIAN S.Z., HU Y.Z., WANG S.M. et al.: Effects ofTripterygium hypoglaucum (Levl.) Hutch on male fertility. Adv. Contracept., 1988, 4: 307–310.

    PubMed  CAS  Article  Google Scholar 

  140. 140.

    QIAN S.Z., HU Y.Z., TONG J.S. et al.: Studies on the effect ofTripterygium wilfordii on the reproduction of men. Chinese J. Androl., 1989, 3: 129–132.

    Google Scholar 

  141. 141.

    QIAN S.Z., XU Y.E., ZHANG J.W.: Recent progress in research onTripterygium: a male antifertility plant. Contraception, 1995, 51: 121–129.

    Article  Google Scholar 

  142. 142.

    RAMACHANDRA S.G., RAMESH V., KRISHNAMURTHY H.N. et al.: Effect of chronic administration of 7 alpha-methyl-19-nortestosterone on serum testosterone, number of spermatozoa and fertility in adult male bonnet monkeys (Macaca radiata). Reproduction, 2002, 124: 301–309.

    PubMed  CAS  Article  Google Scholar 

  143. 143.

    RAMARAO C.S., MYLES D.G., WHITE J.M., PRIMAKOFF P.: Initial evaluation of fertilin as an immunocontraceptive anitgen and molecular cloning of the cynomogus monkey fertilin β subunit. Mol. Reprod. Dev., 1996, 43: 70–75.

    PubMed  CAS  Article  Google Scholar 

  144. 144.

    REDDI P.P., HANSEN S.N., AGUOLNIK I., TSAI J.Y., SILVER L.M. et al.: Complementary deoxyribonucleic acid cloning and characterization of mSp 10: the mouse homologue of human acrosomal protein Sp10. Biol. Reprod., 1995, 53: 873–881.

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    RICHARDSON R.T., YAMASAKI N., O’RAND M.G.: Sequence of a rabbit sperm zona pellucida binding protein and localisation during the acrosome reaction. Dev. Biol., 1994, 165: 688–701.

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    BURSI R., ARIJAN G., VAN DER LOUW J. et al.: Structureactivity relationship study of human liver microsomes-catalyzed hydrolysis rate of ester produgs of MENT by comparative molecular field analysis (CoMFA). Steroids, 2003, 68: 213–220.

    PubMed  CAS  Article  Google Scholar 

  147. 147.

    ROCHWERGER L., COHEN D.J., CUASNICU P.S.: Mammalian sperm-egg fusion: the rat egg has complementary sites for a sperm protein that mediates gamete fusion. Dev. Biol., 1992, 153: 83–90.

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    ROCKETT J.C., MAPP F.L., GARGES J.B. et al.: Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol. Reprod., 2001, 65: 229–239.

    PubMed  CAS  Article  Google Scholar 

  149. 149.

    SANTNER S.J., ALBERTSON B., ZHANG G.Y. et al.: Comparative rates of androgen production and metabolism in Caucasian and Chinese subjects. J. Clin. Endocrinol. Metab., 1998, 83: 2104–2109.

    PubMed  CAS  Article  Google Scholar 

  150. 150.

    SCHEARER S.B.: Current, efforts to develop male hormonal contraception. Studies Family Planning, 1978, 9: 229–231.

    CAS  Article  Google Scholar 

  151. 151.

    SHALGI R., MATITYAHU A., GAUNT S.J., JONES R.: Identification of antigens on rat spermatozoa with a potential role in fertilisation. Mol. Reprod. Dev., 1990, 25: 286–296.

    PubMed  CAS  Article  Google Scholar 

  152. 152.

    SHULMAN S.: Sperm antigens and autoantibodies: effects on fertility. J. Reprod. Immunol. Microbiol., 1986, 10: 69–86.

    Google Scholar 

  153. 153.

    SIGLER L.H., TULGAN J.: Treatment of angina pectoris by testosterone proprionate NY State. J. Med., 1943, 43: 1424–1428.

    Google Scholar 

  154. 154.

    SINHA HIKIM A.P., RAJAVASHISTH T.B., SINHA HIKIM I. et al.: Significance of apoptosis in the temporal and stage-specific loss of germ cells in the adult rat after gonadotropin deprivation. Biol. Reprod., 1997, 57: 1193–1201.

    PubMed  CAS  Article  Google Scholar 

  155. 155.

    SINHA HIKIM A., WANG C., LUE Y.H. et al.: Spontaneous germ cell apoptosis in humans: evidence for ethnic differences in the susceptability of germ cells to programmed cell death. J. Clin. Endocrinol. Metab., 1998, 83: 152–156.

    Article  Google Scholar 

  156. 156.

    SRINIVASAN J., TINGE S., WRIGHT R. et al.: Oral immunisation with attenuated Salmonella expressing human sperm antigen induces antibodies in serum and the reproductive tract. Biol. Reprod., 1995, 53: 462–471.

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    SWERDLOFF R.S., PALAIOS A., MC CLURE R.D. et al.: Clinical evaluation of testosterone enanthate in the reversible suppression of spermatogenesis in the human male: efficacy, mechanism of action and adverse effects In: Patanelli D.J. ed. Hormonal control of male fertility. Bethesda, S DHEW publication, No 78-1097 (NIH), 1978: 41–70.

  158. 158.

    SWERDLOFF R.S., BAGATELL C.J., WANG C. et al.: Suppression of spermatogenesis in man induced by Nal−Glu gonadotropin releasing hormone antagonist and testosterone enanthate is maintained by testosterone enanthate alone. J. Clin. Endocrinol. Metab., 1998, 83: 3527–3533.

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    TABATA Y., IIZUKA Y., SHINEI R. et al.: CP8668, a novel orally active nonsteroidal progesterone receptor modulator with tetrahydrobenzindolone skeleton. Eur. J. Pharmacol., 2003, 461: 73–78.

    PubMed  CAS  Article  Google Scholar 

  160. 160.

    TALWAR G.P.: Vaccines and passive immunological approaches for the control of fertility and hormone-dependent cancers. Immunol. Rev., 1999, 171: 173–192.

    PubMed  CAS  Article  Google Scholar 

  161. 161.

    TARONE G., RUSSO M.A., HIRSCH E. et al.: Expression of β1 integrin complexes on the surface of unfertilized mouse oocytes. Dev. 1993, 117: 1369–1375.

    CAS  Google Scholar 

  162. 162.

    THOMPSON P.D., AHLBERG A.W., MOYNA N.M. et al.: Effect of intravenous testosterone on myocardial ischemia in men with coronary artery disease. Am. Heart J., 2002, 143: 249–256.

    PubMed  CAS  Article  Google Scholar 

  163. 163.

    THONNEAU P., BUJAN L., MULTINGER L., MIEUSSET R.: Occupational heat exposure and male fertility: a review. Hum. Reprod., 1998, 13: 2122–2125.

    PubMed  CAS  Article  Google Scholar 

  164. 164.

    TOM L., BHASIN S., SALAEH W. et al.: Induction of azoospermia in normal men with combined Nal−Glu gonadotropin-releasing hormone antagonist and testosterone enanthate. J. Clin. Endocrinol. Metab., 1992, 75: 476–483.

    PubMed  CAS  Article  Google Scholar 

  165. 165.

    TOSHIMORI K., SAXENA D.K., TANII I., YOSHINAGA K.: An MN9 antegenic molecule, Equatorin, is required for successful sperm-oocyte fusion in mice. Biol. Reprod., 1998, 59: 22–29.

    PubMed  CAS  Article  Google Scholar 

  166. 166.

    TRUSSEL J., KOST K.: Contraceptive failure in the United States: A critical review of literature. Studies in Family planning, 1987, 18: 237–283.

    Article  Google Scholar 

  167. 167.

    TUNG K.S.K., PRIMAKOFF P., WOOLMAN-GAMER L., MYLES D.G.: Mechanism of infertility in male Guinea pigs immunised with sperm PH-20. Biol. Reprod., 1997, 56: 1133–1141.

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    VAN DER SPOEL A.C., JEYAKUMAR M., BUTTERS T.D. et al.: Reversible infertility in male mice after oral administration of alkylated imino sugars: a nonhormonal approach to male contraception. Proc. Natl Acad. Sci. USA, 2002, 99: 17173–17178.

    PubMed  Article  CAS  Google Scholar 

  169. 169.

    VIDAEUS C.M., VON APP-HERR C., GOLDEN W.L. et al.: Human fertilin beta: identification, characterization, and chromosomal mapping of an ADAM gene family member. Mol. Reprod. Dev., 1997, 46: 363–369.

    PubMed  CAS  Article  Google Scholar 

  170. 170.

    WAITES G.M.H.: Male fertility regulation: recent advances. Bull. World Health Organ, 1986, 64: 151–158.

    PubMed  CAS  Google Scholar 

  171. 171.

    WALKER T.C.: Use of testosterone propionate and oestrogenic substance in treatment of essential hypertension, angina pectoris and peripheral vascular disease. J. Clin. Endocrinol., 1942, 2: 560–568.

    CAS  Article  Google Scholar 

  172. 172.

    WANG C., YEUNG K.K.: Use of low-dosage cyproterone acetate as a male contraceptive. Contraception, 1980, 21: 245–272.

    PubMed  CAS  Article  Google Scholar 

  173. 173.

    WANG C., BERMAN N.G., VELDHUIS J.D. et al.: Graded testosterone infusions distinguish gonadotropin negative feed-back responsiveness in Asian and White men. A clinical research center study. J. Clin. Endocrinol. Metab., 1998, 83: 870–876.

    PubMed  CAS  Article  Google Scholar 

  174. 174.

    WANG C., SWERDLOFF R.S.: Male contraception in the 21st century. In: Wang C. ed. Male Reproductive Function. Boston, Kluwer Academic Publisher, 1999: 303–319.

    Google Scholar 

  175. 175.

    WANG C., SWERDLOFF R.S.: Androgen replacement therapy, risks and benefits. In Wang C. ed. Male Reproductive Function. Boston, Kluwer Academic Publisher, 1999: 157–172.

    Google Scholar 

  176. 176.

    WATERS S.I., WHITE J.M.: Biochemical and molecular characterisation of bovine fertilin (α and β (ADAM 1 and ADAM 2)): A candidate sperm-egg binding/fusion complex. Biol. Reprod., 1997, 56:1245–1254.

    PubMed  CAS  Article  Google Scholar 

  177. 177.

    WEBB C.M., Mc NEILL J.G., HAYWARD C.S. et al.: Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation, 1999, 100: 1690–1696.

    PubMed  CAS  Google Scholar 

  178. 178.

    WEINBAURER G.F., ROVAN E., FRICK J.: Toxicity of gossypol at antifertility dosages in male rats. Statistical analyses of lethal rates and body weight responses. Andrology, 1983, 15: 213–221.

    Google Scholar 

  179. 179.

    WESKAMP G., KRATZSCHMAR J., REID M.S., BLOBEL C.P.: MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. J. Cell Biol., 1996, 132: 717–726.

    PubMed  CAS  Article  Google Scholar 

  180. 180.

    WOLFSBERG T.G., STRAIGHT P.D., GERENA R.L. et al.: ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a desintegrin and metalloprotease domain. Dev. Biol., 1995, 169: 378–383.

    PubMed  CAS  Article  Google Scholar 

  181. 181.

    WONG Y., LOUS Y., TANG X.: Studies on the antifertility actions of cottonseed meal and gossypol. Acta Pharm. Sinica, 1979, 14: 662–666.

    Google Scholar 

  182. 182.

    World Health Organization Task Force on Methods for the Regulation of Male Fertility: Contraceptive efficacy of testosterone-induced azoospermia in normal men. Lancet, 1990, 336: 955–959.

    Article  Google Scholar 

  183. 183.

    World Health Organization Task Force on Methods for the Regulation of Male Fertility: Contraceptive efficacy of testosterone-induced azoospermia and oligozoospermia in normal men. Fertil. Steril., 1996, 65: 821–829.

    Google Scholar 

  184. 184.

    World Health Organization Task Force on Methods for the regulation of Male Fertility: Comparison of two androgens plus depo-medroxyprogesterone acetate for suppression to azoospermia in Indonesian men. Fertil. Steril., 1993, 60: 1062–1068.

    Google Scholar 

  185. 185.

    WRIGHT E.J., YONG G.P., GOLDSTEIN M.: Reduction in testicular temperature after varticocelectomy in infertile men. Urology, 1997, 50: 257–259.

    PubMed  CAS  Article  Google Scholar 

  186. 186.

    WRIGHT R.M., JOHN E., FLIGKINGER C.J., HERR J.C.: Cloning and sequency of cDNAs encoding for the human intra-acrosomal antigen SP10. Biol. Reprod., 1990, 42: 693–701.

    PubMed  CAS  Article  Google Scholar 

  187. 187.

    WRIGHT R.M., SURI A.K., KORNREICH B. et al.: Cloning and characterization of the gene coding for the human acrosomal protein SP-10. Biol. Reprod., 1993, 49: 316–325.

    PubMed  CAS  Article  Google Scholar 

  188. 188.

    WU F.C., BALASUBRAMANIAN R., MULDERS T.M., COELINGH-BENNINK H.J.: Oral progestogen combined with testosterone as a potential male contraceptive: additive effects between desogestrel and testosterone enanthate in suppression of spermatogenesis, pituitary-testicular axis, and lipid metabolism. J. Endocrinol. Metab., 1999, 84: 112–122.

    CAS  Article  Google Scholar 

  189. 189.

    YAMASAKI N., RICHARDSON R.T., O’RAND M.G.: Expression of the rabbit sperm protein Sp17 in COS cells and interaction of recombinant Sp17 with the rabbit zona pellucida. Mol. Reprod. Dev., 1995, 40: 48–55.

    PubMed  CAS  Article  Google Scholar 

  190. 190.

    YU DY.: One hundred and forty-four cases of rheumatoid arthritis treated withTrypterygium wilfordii. J. Traditional Chinese Med., 1983, 3: 125–129.

    CAS  Google Scholar 

  191. 191.

    ZHANG C.Y., GU Y.Q., WANG X.H. et al.: A pharmacokinetic study of injectable testosterone undecanoate in hypogonadal men. J. Androl., 1998, 19: 761–768.

    PubMed  CAS  Google Scholar 

  192. 192.

    ZHANG G.Y., GU Y.G., WANG X.H. et al.: A clinical trial of injectable testosterone undecanoate as a potential male contraceptive in normal Chinese men. J. Clin. Endocrinol. Metab., 1999, 84: 3642–3647.

    PubMed  CAS  Article  Google Scholar 

  193. 193.

    ZHEN Q.S., YE X., WEI Z.J.: Recent progress in research on Tripterygium: a male antifertility plant. Contraception, 1995, 51: 121–129.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clément Jimenez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jimenez, C. La contraception masculine. Androl. 14, 275–290 (2004). https://doi.org/10.1007/BF03034915

Download citation

Mots clés

  • contraception masculine
  • contraception hormonale
  • immunocontraception
  • antigène spermatique

Key words

  • male contraception
  • hormonal contraception
  • immunocontraception
  • sperm antigens