Skip to main content
  • Apoptose, Spermatogenèse, Spermatozoïdes
  • Published:

Apoptose et spermatogenèse

Spermatogenesis and apoptosis

Resume

L’initiation de la spermatogenèse s’accompagne d’une vague d’apoptose qui limite l’efficience des premiers cycles spermatogénétiques chez la plupart des mammifères. Au delà des premiers cycles, le rendement théorique n’est jamais atteint traduisant l’existence d’une perte cellulaire. Parmi les cellules germinales, les spermatogonies sont des cibles privilégiées d’une apoptose physiologique. Ce processus est étroitement lié aux relations établies par les cellules germinales avec les cellules de Sertoli, le concept de régulation densité dépendante datant de la fin des années 80. La nécessaire synchronisation des étapes de la spermatogenèse exige que le cycle cellulaire progresse plutôt qu’il ne s’arrête, ce qui pourrait expliquer la plus grande sensibilité des cellules germinales à l’apoptose. Le prix à payer est que l’équilibre entre prolifération et mort cellulaire peut être facilement perturbé dans l’un ou l’autre sens.

Les premières approches réalisées pour comprendre les mécanismes en jeu dans l’apoptose des cellules germinales ont exploré sa dépendance hormonale (hormones gonadotropes, stéroïdes). Cependant, les situations observées ne permettaient pas d’établir de lien direct avec les voies de transduction et les mécanismes de régulation de l’apoptose au niveau testiculaire. Les étapes qui ont suivi concernent le démembrement des voies de transduction impliquées dans l’apoptose et leur régulation au cours de la spermatogenèse.

L’implication des gènes de la familleBcl-2 est reconnue même si l’expression de certains de ses membres reste controversée. Les données résultant de la surexpression de certains gènes (Bcl-2, Bcl-xl) et les données issues des inactivations de certains gènes(Bax) confirment le rôle exercé par ces gènes dans le contrôle de l’apoptose au niveau testiculaire tout en soulignant la stricte nécessité d’une régulation densité dépendante de la spermatogenèse. Plus récemment des profils d’expression de ces gènes ou protéines ont été décrits, avec des variations susceptibles d’expliquer certains résultats contradictoires de la littérature.

La place du système Fas/Fas ligand dans l’apoptose physiologique accompagnant les premiers cycles spermatogenétiques reste controversée alors que sa mise en jeu lors de certaines agressions chimio ou radio-thérapeutiques est admise. Cependant, l’inactivation du gène codant pour Fas ou son ligand ne génère pas d’infertilité ce qui limite son importance physiologique au niveau testiculaire.

L’identification et le démembrement du système TNF (Tumor Necrosis Factor) et de ses récepteurs ne fait que commencer. L’expression de certaines protéines impliquées dans cette voie ou reliées à cette voie a été confirmée au niveau testiculaire mais semble plutôt concerner des étapes postméiotiques de la spermatogénèse.

Parmi les oncogènes susceptibles de réguler ce phénomène, le coupleKit/Stem Cell Factor occupe une place singulière du fait de son expression au niveau testiculaire et de son rôle bien établi au cours du développement gonadique ainsi que dans la survie et la prolifération des spermatogonies différenciées. En utilisant un modèle transgénique de souris hétérozygote pour l’inactivation par transgenèse du gèneKit, nous avons pu montrer l’incapacité d’une seule copie du gèneKit à préserver une spermatogenèse et une fertilité normales chez la souris. En outre les résultats observés suggèrent l’intervention de ce gène à différentes phases de la spermatogenèse, selon des voies de transduction qui pourraient diverger.

Au total l’analyse des voies et mécanismes contrôlant l’apoptose au cours de la spermatogenèse sont des étapes clés pour la compréhension de certains troubles de la spermatogenèse comme de la genèse des tumeurs testiculaires à cellules germinales.

Abstract

Onset of spermatogenesis is associated with a wave of apoptosis, which limits its efficacy during the first cycles in most mammals. After the first cycles, the actual efficacy of spermatogenesis always remains below the theoretical yield. Among the germinal cells, spermatogonia are the main targets of physiological apoptosis. This physiological apoptosis partly depends on the relationships between germ cells and Sertoli cells. The impact of the Sertoli cell/germ cell number ratio on the efficacy of spermatogenesis is well accepted, the concept of density-dependent regulation in the seminiferous tubule was proposed in the early eighties. Since the steps of spermatogenesis require a continuous progression of the cell cycle rather than an arrest, germ cells might therefore be more sensitive to apoptosis. This may also lead to severe disturbances between proliferation and cell death.

The first experiments designed to elucidate the mechanisms of germ cell apoptosis were based on hormonal deprivation or cryptorchidism. However, the link between hormonal or cellular action and cell survival remained to be established. Analysis of signal transduction pathways involved in germ cell apoptosis and their regulation were the next steps.

The involvement of bcl-2 family genes has been confirmed, although the expression of some of its members remains more controversial. Data derived from overexpression of some genes (Bcl-2, Bcl-xl) or resulting from gene inactivation (Bax) at the testicular level have highlighted the role of these genes in the control of germ cell apoptosis and have also provided some evidence for the strict requirement for density-dependent regulation of spermatogenesis. More recently, variations in the pattern of expression of these genes or proteins helped to explain some of the discrepancies in the literature.

The place of the Fas/Fas ligand system during the first cycle of spermatogenesis remains a matter of debate, with controversies concerning the precise site of expression of this oncogene and its receptor. Conversely, its role in the testis after chemotoxic or radiotoxic treatments is well established. However, the normal fertility of animals with a spontaneous inactivation of Fas or Fas L genes does not support a physiological role of these factors during spermatogenesis.

While factors involved in TNF/TNF R1 (Tumor Necrosis Factor) are under study, some data have been reported concerning the role of TRAIL (TNFalpha Related Apoptosis Inducing Ligand) and its active or decoy receptors in the testis.

Among the oncogenes which may modulate the apoptotic process, Kit/Stem Cell Factor is particularly interesting, as Kit is expressed in some germ cells and Leydig cells, whereas SCF is expressed by Sertoli cells. Its impact during gonadal development and in the survival and proliferation of differentiated spermatogonia has been clearly established. Using a transgenic mice model, in which the Kit gene was inactivated by the insertion of a nls-lacZ sequence in its first exon, we showed that one single copy of the gene was unable to sustain physiological spermatogenesis and fertility in male mice. Our results also suggest that the Kit gene might be expressed at different steps of spermatogenesis, with different signal transduction pathways and biological actions.

Finally, analysis of the signal transduction pathways involved in testicular apoptosis and their mechanisms of control is one of the key steps to a better understanding of both impairment of spermatogenesis and the pathogenesis of certain germ cell tumours.

References

  1. ADACHI M., SUEMATSU S., KONDO T. et al.: Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat. Genet., 1995, 11: 294–300.

    Article  PubMed  CAS  Google Scholar 

  2. ADAMS J.M., CORY S.: The Bcl-2 protein family: arbiters of cell survival. Science, 1998, 281: 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  3. ALLAN D.J., HARMONT B.V., ROBERTS S.A.: Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rythm during normal spermatogenesis in the rat. Cell Prolif., 1992, 25: 241–250.

    Article  PubMed  CAS  Google Scholar 

  4. ALLEMAND I., ANGLO A., JEANTET A.Y., CERUTTI I., MAY E.: Testicular wild-type p53 expression in transgenic mice induces spermiogenesis alterations ranging from differentiation defects to apoptosis. Oncogene, 1999, 18: 6521–6530.

    Article  PubMed  CAS  Google Scholar 

  5. ASHKENAZI A., DIXIT V.M.: Death receptors: signaling and modulation. Science, 1998, 281: 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  6. ASHMAN L.K.: The biology of stem cell factor and its receptor C-kit. Int. J. Biochem. Cell Biol., 1999, 31: 1037–1051.

    Article  PubMed  CAS  Google Scholar 

  7. BERNEX F., DE SEPULVEDA P., KRESS C., ELBAZ C., DELOUIS C., PANTHIER J.J.: Spatial and temporal patterns of c-kit-expressing cells in WlacZ/+and WlacZ/WlacZ mouse embryos. Development, 1996, 122: 3023–3033.

    PubMed  CAS  Google Scholar 

  8. BEURNER T.L., ROEPERS-GAJADIEN H.L., GADEMAN I.S. et al.: The role of the tumour suppressor p53 in spermatogenesis. Cell Death Differ., 1998, 5: 669–678.

    Article  CAS  Google Scholar 

  9. BILLIG H., FURATA I., RIVIER C., TAPANAINEN J., PARVINEN M., HSUEH J.W.: Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology, 1995, 136: 5–12.

    Article  PubMed  CAS  Google Scholar 

  10. BLUME-JENSEN P., JIANG G., HYMAN R., LEE K.F., O’GORMAN S., HUNTER T.: Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3’-kinase is essential for male fertility. Nat. Genet., 2000, 24: 157–162.

    Article  PubMed  CAS  Google Scholar 

  11. BOEKELHEIDE K., LEE, J., SHIPP E.B., RICHBURG J.H., LI G.: Expression of Fas system-related genes in the testis during development after toxicant exposure. Toxicol. Letters, 1998, 102–103: 503–508.

    Article  Google Scholar 

  12. BRINKWORTH M.H., WEINBAUER G.F., SCHLATT S., NIESCHLAG E.: Identification of male germ cells undergoing apoptosis in adult rats. J. Reprod. Fert., 1995, 105: 25–33.

    Article  CAS  Google Scholar 

  13. D’ALESSIO A., RICCIOLI A., LAURETTI P. et al.: Testicular FasL expression is expressed by sperm cells. Proc. Natl. Acad. Sci., 2001, 98: 3316–3321.

    Article  PubMed  CAS  Google Scholar 

  14. DE ROOIJ D.G., GROOTEGOED A.: Spermatogonial stem cells. Curr. Opin. Cell. Biol., 1998, 10: 694–701.

    Article  PubMed  Google Scholar 

  15. DOLCI S., PELLEGRINI M., DI AGOSTINO S., GEREMIA R., ROSSI P.: Signaling through extracellular signal-regulated kinases is required for spermatogonial proliferative response to stem cell factor. J. Biol. Chem., 2001, 276: 40225–40233.

    PubMed  CAS  Google Scholar 

  16. EZOE K., HOLMES S.A., HO L. et al.: Novel mutations and deletions of the Kit (steel factor receptor) gene in human piebaldism. Am. J. Hum. Genet., 1995, 56: 58–66.

    PubMed  CAS  Google Scholar 

  17. FLEISHMAN R.A.: Human piebald trait resulting form a dominant negative mutant allele of the c-kit membrane receptor gene. J. Clin. Invest., 1992, 89: 1713–1717.

    Article  Google Scholar 

  18. FLEISHMAN R.A., GALLARDO T., MI X.: Mutations in the ligand binding domain of the kit receptor: an uncommon site in human piebaldism. J. Invest. Dermatol., 1996, 107: 703–706.

    Article  Google Scholar 

  19. FRANCAVILLA S., D’ABRIZIO P., RUCCI N. et al.: Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis. J. Clin. Endocrinol. Metab., 2000, 85: 2692–2700.

    Article  PubMed  CAS  Google Scholar 

  20. GODIN I., DEED R., COOKE, J., ZSEBO K., DEXTER M., WYLIE C.C.: Effects of the steel gene product on mouse primordial germ cells in culture. Nature, 1991, 352: 807–809.

    Article  PubMed  CAS  Google Scholar 

  21. GRATAROLI R., VINDRIEUX D., GOUGEON A., BENAHMED M.: Expression of Tumor Necrosis Factor-α-Related Apoptosis Inducing Ligand and its receptors in rat testis during development. Biol. Reprod., 2002, 66: 1707–1715.

    Article  PubMed  CAS  Google Scholar 

  22. GUERIF F., CADORET V., RAHAL-PEROLA V. et al.: Apoptosis, onset and maintenance of spermatogenesis: evidence for the involvement ofKit inKit-haplodeficient mice. Biol. Reprod., 2002, 67: 70–79.

    Article  PubMed  CAS  Google Scholar 

  23. GUERIF F., CADORET V., PLAT M. et al.: Characterization of the fertility ofKit-haplodeficient male mice. Int. J. Androl., 2002, 25: 358–368.

    Article  PubMed  CAS  Google Scholar 

  24. HENRIKSEN K., HAKOVIRTA H., PARVINEN M.:In situ quantification of stage-specific apoptosis in the rat seminiferous epithelium: effects of short-term experimental cryptorchidism. Int. J. Androl., 1995, 18: 256–262.

    PubMed  CAS  Google Scholar 

  25. HENRIKSEN K., KANGASNIEMI M., PARVINEN M., KAIPIA A., HAKOVIRTA H.:In vitro Follicle-stimulating hormone prevents apoptosis and stimulates deoxyribonucleic acid synthesis in the rat seminiferous epithelium in a stage-specific fashion. Endocrinology, 1996, 137: 2141–2149.

    Article  PubMed  CAS  Google Scholar 

  26. KERR J.F., WYLLIE A.H., CURRIE A.R.: Apoptosis: a basis biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26: 239–257.

    PubMed  CAS  Google Scholar 

  27. KISSEL H., TIMOKHINA I., HARDY M.P. et al.: Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J., 2000, 19: 1312–1326.

    Article  PubMed  CAS  Google Scholar 

  28. KNUDSON C.M., TUNG K.S.K., TOURLETOTTE W.G., BROWN G.A.J., KORSMEYER S.J.: Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science, 1995, 270: 96–99.

    Article  PubMed  CAS  Google Scholar 

  29. LEE J., RICHBURG J.H., YOUKIN S.C., BOEKELHEIDE K.: The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology, 1997, 138: 2081–2088.

    Article  PubMed  CAS  Google Scholar 

  30. LEE J., RICHBURG J.H., SHIPP E.B., MEISTRICH M.L., BOEKELHEIDE K.: Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in sertoli cell versus germ cell injury of the testis. Endocrinology, 1999, 140: 852–858.

    Article  PubMed  CAS  Google Scholar 

  31. MATSUI Y., TOKSOZ D., NISHIKAWA S. et al.: Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature, 1991, 353: 750–752.

    Article  PubMed  CAS  Google Scholar 

  32. MATSUI Y., NAGANO R., OBINATA M.: Apoptosis of fetal testicular cells is regulated by both p53-dependent and independent mechanisms. Mol. Reprod. Dev., 2000, 55: 399–405.

    Article  PubMed  CAS  Google Scholar 

  33. OHTA H., YOMOGIDA K., DOHMAE K., NISHIMUNE Y.: Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development, 2000, 127: 2125–2131.

    PubMed  CAS  Google Scholar 

  34. OLDEREID N.B., DE ANGELIS P., WIGER R., CLAUSEN O.P.F.: Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis. Mol. Hum. Reprod., 2001, 7: 403–408.

    Article  PubMed  CAS  Google Scholar 

  35. PACKER A.I., BESMER P., BACHVAROVA R.F.: Kit ligand mediates survival of type A spermatogonia and dividing spermatocytes in postnatal mouse testes. Mol. Reprod. Dev., 1995, 42: 303–310.

    Article  PubMed  CAS  Google Scholar 

  36. PENTIKAINEN V., ERKKILA K., DUNKEL L.: Fas regulates germ cell apoptosis in the human testisin vitro. Am. J. Physiol., 1999, 276 (Endocrinol. Metab. 39): E310-E316.

    PubMed  CAS  Google Scholar 

  37. PENTIKAINEN V., ERKKILA K., SUOMALAINEN L. et al.: TNFα down regulates the Fas ligand and inhibits germ cell apoptosis in the human testis. J. Clin. Endocrinol. Metab., 2001, 86: 4480–4488.

    Article  PubMed  CAS  Google Scholar 

  38. RICCIOLI A., SALVATI L., D’ALESSIO A. et al.: The Fas system in the seminiferous epithelium and its possible extra-testicular role. Andrologia, 2003, 35: 64–70.

    Article  PubMed  CAS  Google Scholar 

  39. RODRIGUEZ I., ODY C., ARAKI K., GARCIA I., VASSAMO P.: An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J., 1997, 16: 2262–2270.

    Article  PubMed  CAS  Google Scholar 

  40. ROSSI P., SETTE C., DOLCI S., GEREMIA R.: Role of c-kit in mammalian spermatogenesis. J. Endocrinol. Invest., 2000, 23: 609–615.

    PubMed  CAS  Google Scholar 

  41. SETTE C., PARONETTE M.P., BARCHI M., BEVILACQUA A., GEREMIA R., ROSSI P.: Tr-kit induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO J., 2002, 21: 5386–5395

    Article  PubMed  CAS  Google Scholar 

  42. SHIKONE T., BILLIG H., HSUEH A.J.W.: Experimentally induced cryptorchidism increases apoptosis in rat testis. Biol. Reprod., 1994, 51: 865–872.

    Article  PubMed  CAS  Google Scholar 

  43. SINHA HIKIM A.P., WENG C., LEUNG A., SWERDLOFF R.S.: Involvment of apoptosis in the induction of germ cell degeneration in adult rats after gonadotropin releasing hormone antagonist treatment. Endocrinology, 1995, 136: 2770–2775.

    Article  Google Scholar 

  44. SIONOV R.V., HAUPT Y.: The cellular response to p53: the decision between life and death. Oncogene, 1999, 18: 6145–6157.

    Article  PubMed  CAS  Google Scholar 

  45. TAPANAINEN J.S., TILLY J.L., VIHKO K.K., HSUEH A.J.W.: Hormonal control of apoptotic cell death in the testis: gonadotropins and androgens as testicular cell survival factors. Mol. Endocrinol., 1993, 7: 643–650.

    Article  PubMed  CAS  Google Scholar 

  46. TROIANO L., FUSTINI M.F., LOVATO E. et al.: Apoptosis and spermatogenesis: evidence from anin vivo model of testosterone withdrawal in the adult rat. Biochem. Biophys. Res. Comm., 1994, 202: 1315–1321.

    Article  PubMed  CAS  Google Scholar 

  47. YAN W., SAMSON M., JEGOU B., TOPPARI J.: Bcl-w forms complexes with Bax and Bak, and elevated ratios of Bax/Bcl-w and Bak/Bcl-w correspond to spermatogonial and spermatocyte apoptosis in the testis. Mol. Endocrinol., 2000, 14: 682–699.

    Article  PubMed  CAS  Google Scholar 

  48. YAN W., KERO J., HUHTANIEMI I., TOPPARI J.: Stem cell factor functions as a survival factor for mature Leydig cells and a growth factor for precursor Leydig cells after ethylene dimethane sulfonate treatment: implication of a role of the stem cell Factor/c-Kit system in Leydig cell development. Dev. Biol., 2000, 227: 169–182.

    Article  PubMed  CAS  Google Scholar 

  49. YAN W., SUOMINEN J., TOPPARI J.: Stem cell factor protects germ cells from apoptosis in vitro. J. Cell Sci., 2000, 113: 161–168.

    PubMed  CAS  Google Scholar 

  50. YIN Y., STAHL B.C., DEWOLF W.C., MORGENTALER A.: P53-mediated germ cell quality control in spermatogenesis. Dev. Biol., 1998, 204: 165–171.

    Article  PubMed  CAS  Google Scholar 

  51. YOSHINAGA K., NISHIKAWA S., OGAWA M. et al.: Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development, 1991, 113: 689–699.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Royere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royere, D., Guerif, F., Laurent-Cadoret, V. et al. Apoptose et spermatogenèse. Androl. 13, 209–216 (2003). https://doi.org/10.1007/BF03034874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034874

Mots-clés

Key Words