Skip to main content

Advertisement

The treatment of obstructive azoospermia by intracytoplasmic sperm injection

Traitement de l’azoospermie obstructive par injection Intracytoplasmique d’un spermatozoïde

Article metrics

  • 329 Accesses

  • 1 Citations

Abstract

Intracytoplasmic sperm injection (ICSI) allows the treatment of virtually every type of male infertility. Unlike in vitro fertilization (IVF), its success does not depend on sperm concentration, motility or morphology and most of the physical barriers to fertilisation are by-passes. Since ICSI does not require strongly motile sperm, its use has now been expanded to incorporate immature sperm from the testes and epididymides. Successful fertilisation, pregnancies and healthy babies have all been reported. However, concerns about the safety of ICSI remain due to its short clinical history and the lack of testing on animal models.

Male fertility potential for assisted reproduction by ICSI cannot be measured by conventional parameters. Sperm DNA integrity is increasingly recognised as a more useful indicator. Studies have shown that sperm with higher levels of DNA damage have lower fertilisation rates after IVF and ICSI. Sperm with DNA damage above a certain threshold are associated with a longer time to conceive in otherwise apparently fertile couples and a higher miscarriage rate. DNA damage has been shown to be associated with impaired embryo cleavage. Our group has shown that sperm DNA from testicular sperm is less fragmented than that from epididymal sperm and suggest its preferred use in ICSI.

In addition to nuclear (n) DNA we also assessed the quality of mitochondrial (mt) DNA from testicular sperm from men with obstructive azoospermia undergoing ICSI. We observed that couples achieving a pregnancy had both less mtDNA deletions and less nDNA fragmentation. We found inverse relationships between pregnancy and sperm mtDNA deletion numbers, size and nDNA fragmentation. No relationships were observed with fertilisation rates. With this knowledge, we designed an algorithm for the prediction of pregnancy based on the quality of sperm nDNA and mtDNA.

Each year 40,000 men have a vasectomy in the UK but every year 2500 request a reversal to begin a second family. For such men, vasectomy reversal has recently been replaced in part by testicular biopsy via fine-needle testicular sperm aspiration (TESA) or percutaneous epididymal sperm aspiration (PESA) performed at an outpatient clinic and subsequently used in ICSI. Since these were previously fertile men it has been assumed that they had ‘fertile’ sperm. However the assited conception success rates of these mens partners has not been assessed until recently. We have shown a significant reduction in the clinical pregnancy rates in the partners of men who had had a vasectomy ≥10yrs previously. There is also evidence to suggest that spermatogenesis is significantly impaired in vasectomised men. Marked decreases in spermatocytes, spermatids and spermatozoa have been observed. We have found this to be associated with concomitant increases in apoptotic markers, such as Fas, FasL and Bax. The quality of the remaining sperm is also compromised. Sperm DNA from vasectomized men shows substantial damage which increases with time after surgery. This new use of ICSI will be discussed.

Resume

L’injection intracytoplasmique d’un spermatozoïde (ICSI) permet de traiter virtuellement n’importe quel type d’infécondité masculine. A la différence de la Fécondation in vitro (FIV), son succès ne dépend pas de la concentration, de la mobilité ou de la morphologie des spermatozoïdes et la plupart des barrières physiques à la fécondation sont ainsi contournées. Puisque l’ICSI ne requiert pas de spermatozoïdes fortement mobiles, son usage a été maintenant élargi à l’utilisation des spermatozoïdes immatures des testicules et des épididymes. Une fécondation réussie, des grossesses, et des enfants en bonne santé ont tous été rapportés. Toutefois, persistent des inquiétudes à propos de l’innocuité de l’ICSI qui sont dues à sa brève existence clinique et à l’absence d’expérimentation sur des modèles animaux.

Le potentiel de fécondité masculine pour la reproduction assistée par ICSI ne peut pas être mesuré par les paramètres conventionnels. L’intégrité de l’ADN spermatique est, de façon grandissante, reconnue comme un indicateur plus utile. Des études ont montré que les spermatozoïdes ayant des taux élevés d’altération de l’ADN, ont des taux de fécondation plus faibles en FIV et en ICSI. Les spermatozoïdes avec une altération de l’ADN au-dessus d’un certain seuil sont associés à une augmentation du délai pour concevoir chez des couples par ailleurs apparemment féconds, et à un taux élevé de fausses-couches. On a montré que l’altération de l’ADN était liée à une segmentation embryonnaire défectueuse. Notre groupe a rapporté que l’ADN de spermatozoïdes provenant du testicule était moins fragmenté que l’ADN de spermatozoïdes provenant de l’épididyme, ce qui suggère l’utilisation préférée des premiers en ICSI.

En plus de l’ADN nucléaire (n), nous avons aussi évalué la qualité de l’ADN mitochondrial (mt) dans les spermatozoïdes testiculaires d’hommes avec azoospermie obstructive en cours d’ICSI.

Nous avons observé que les couples qui obtenaient une grossesse, avaient à la fois moins de délétions de l’ADNmt et moins de fragmentation de l’ADNn. Nous avons trouvé une relation inverse entre grossesse d’une part, et d’autre part, nombres de délétion de l’ADNmet et taille et fragmentation de l’ADNn des spermatozoïdes. Aucune relation n’a été observée avec les taux de fécondation. Avec ces données, nous avons établi un algorithme pour la prédiction de grossesses, basé sur la qualité de l’ADN, et l’ADNmt des spermatozoïdes.

Chaque année 40 000 hommes ont une vasectomie au Royaume Uni, mais chaque année 2500 demandent une reperméabilisation pour fonder une seconde famille. Pour de tels hommes, la réversion de la vasectomie a récemment été remplacée en partie par la biopsie testiculaire, au moyen de l’aspiration de spermatozoïdes testiculaires à l’aiguille fine (TESA) ou de l’aspiration percutanée de spermatozoïdes épididymaires (PESA), réalisée en ambulatoire et utilisée ensuite en ICSI. Puisque ces hommes étaient auparavant des hommes féconds, on les a considérés comme ayant des spermatozoïdes “féconds”. Toutefois, les taux de succès en conception assistée des partenaires de ces hommes n’ont été évalués que récemment. Nous avons montré une réduction significative des taux de grossesse clinique chez les partenaires des hommes qui avaient eu une vasectomie plus de 10 ans auparavant. II existe aussi des éléments qui suggèrent que la spermatogenèse est altérée de façon significative chez les hommes vasectomisés. Une diminution importante des spermatocytes, des spermatides et des spermatozoïdes a été observée. Nous avons trouvé que celle-ci était associée à une augmentation concomitante des marqueurs de l’apoptose, comme le Fas, FasL et Bax. La qualité des spermatozoïdes qui restent est aussi compromise. L’ADN des spermatozoïdes d’hommes vasectomisés présente des altérations substantielles qui augmentent avec le temps après la chirurgie.

L’auteur discute cette nouvelle indication de l’ICSI.

References

  1. 1.

    ABDELMASSIH V., BALMACEDA J., TESARIK J., ABDELMASSIH R., NAGY N.: Relationship between time period after vasectomy and the reproductive capacity of sperm obtained by epidymal aspiration. Hum. Reprod., 2002, 17: 736–740.

  2. 2.

    AITKEN R.J.: Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev., 1995, 7: 659–668.

  3. 3.

    AITKEN R.J., FISHER H.M., FULTON N. et al.: Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol. Reprod. Dev., 1997, 47: 468–482.

  4. 4.

    AITKEN R.J., GORDON E., HARKISS D. et al.: Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol. Reprod., 1998, 59: 1037–1046.

  5. 5.

    ALVAREZ J.G.: Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular sperm. Hum. Reprod., 2005, 20: 2031–2032.

  6. 6.

    BALABAN B., URMAN B., SERTAC A. et al.: In vitro culture of spermatozoa induces motility and increases implantation and pregnancy rates after testicular sperm extraction and intracytoplasmic sperm injection. Hum. Reprod., 1999, 14: 2808–2811.

  7. 7.

    BALLESCA J.L., BALASCH B., CALAFELL J.M. et al.: Serum inhibin B determination is predictive of successful testicular sperm extraction in men with non-obstructive azoospermia. Hum. Reprod., 2000, 15: 1734–1738.

  8. 8.

    BAR-HAVA I., ASHKENAZI J., SHELEF M. et al.: Morphology and clinical outcomes of embryos after in vitro fertilization are superior to those after intracytoplasmic sperm injection. Fertil. Steril., 1997, 68: 653–657.

  9. 9.

    BILLIG H., FURUTA I., RIVIER C., TAPANAINEN J., PARVINEN M., HSUEH A.J.: Apoptosis in testis germ cells: Developmental changes in gonadotropin dependence and localisation to selective tubules stages. Endocrinology, 1995, 136: 5–12.

  10. 10.

    BORGES E.J., ROSSI-FERRAGUT L.M., PASQUALOTTO F.F. et al.: Testicular sperm results in elevated miscarriage rates compared to epididymal sperm in azoospermic patients. Sao Paulo Med. J., 2002, 120: 122–126.

  11. 11.

    BONDUELLE M., LIEBAERS I., DEKETELAERE V.: Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum. Reprod., 2002, 17: 671–694.

  12. 12.

    BORGES E., ROSSI-FERRAGUT L., PASQUALOTTO F., ROCHA C., IACONELLI A.: Different intervals between vasectomy and sperm retrieval interfere in the reproductive capacity from vasectomised men. J. Assist. Reprod. Genet., 2003, 20: 33–37.

  13. 13.

    BOWEN J.R., GIBSON F.L., LESLIE G.I., SAUNDERS D.M.: Medical and developmental outcome at 1 year for children conceived by intrscytoplasmic sperm injection. Lancet, 1998, 351: 1529–1534.

  14. 14.

    BRAUN R.E.: Early sperm is scared or is it? Nature Genet., 1998, 18: 202–204.

  15. 15.

    CALAMERA J.C., FERNANDEZ P.J., BUFFONE M.G., ACOSTA A.A., DONCEL G.F.: Effects of long term in vitro incubation of human spermatozoa: functional parameters and catalase effect. Andrologia, 2001, 33: 79–86.

  16. 16.

    CHATTERJEE S., GAGNON C.: Production of reactive oxygen species by spermatozoa undergoing cooling, freezing and thawing. Mol. Reprod. Dev., 2001, 59: 451–458.

  17. 17.

    CRAFT I., TSIRIGOTIS M., BENNETT V. et al.: Percutaneous epididymal sperm aspiration and intracytoplasmic sperm injection in the management of infertility due to obstructive azoospermia. Fertil. Steril., 1995, 63: 1038–1042.

  18. 18.

    CRAFT I., TSIRIGOTIS M.: Simplified recovery, preparation and cryopreservation of testicular spermatozoa. Hum. Reprod., 1995, 10: 1623–1627.

  19. 19.

    CUMMINS J.M., JEQUIER A.M., KAN R.: Molecular biology of human male infertility: links with aging, mitochondrial genetics and oxidative stress? Mol. Reprod. Dev., 1994, 37: 345–362.

  20. 20.

    DALZELL L.H., THOMPSON-CREE M.E.M., McCLURE N., TRAUB A.I., LEWIS S.E.M.: The effects of 24-hour incubation after freeze-thawing on DNA fragmentation of testicular sperm from infertile and fertile men. Fert. Steril., 2003, 79: 1670–1672.

  21. 21.

    DE LAMIRANDE E., TSAI C., HARAKAT A., GAGNON C.: Involvement of reactive oxygen species in human sperm acrosome reaction induced by A23187, lysophosphatidylcholine, and biological fluid ultrafiltrates. J. Androl., 1998, 19: 585–594.

  22. 22.

    DEVOTO E., MADARIAGA M., LIOI X.: Causes of male infertility. The contribution of the endocrine factor. Rev. Med. Chil., 2000, 128: 184–192.

  23. 23.

    DEVROEY P., LIU J., SILBER S., NAGY Z., VAN STEIRTEGHEM A.C.: Normal fertilisation of human oocytes after testicular sperm extraction and intracytoplasmic sperm injection. Fertil. Steril., 1994, 62: 639–641.

  24. 24.

    DEVROEY P., LIU J., NAGY Z. et al.: Pregnancies after testicular sperm extraction and intracytoplasmic sperm injection in non-obstructive azoospermia. Hum. Reprod., 1995, 10: 1457–1460.

  25. 25.

    DONNELLY E.T., STEELE E.K., MCCLURE N., LEWIS S.E.M.: Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum. Reprod., 2001, 16: 1191–1199.

  26. 26.

    EDIRISINGHE W.R., JUNK S.M., MATSON P.L., YOVICH J.L.: Changes in motility patterns during in-vitro culture of fresh and frozen/thawed testicular and epididymal spermatozoa: implications for planning treatment by intracytoplasmic sperm injection. Hum. Reprod., 1996, 11: 2474–2746.

  27. 27.

    EMILIANI S., VAN DEN BERGH M., VANNIN A.-S., BIRAMANE J., VERDOODT M., ENGLERT Y.: Increased sperm motility after in vitro culture of testicular biopsies from obstructive azoospermic patients results in better post-thaw recovery rate. Hum. Reprod., 2000, 15: 2371–2374.

  28. 28.

    EVENSON D. P., JOST L.K., MARSHALL D. et al.: Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum. Reprod., 1999, 14: 1039–1049.

  29. 29.

    FUENTES-MASCORRO G., SERRANO H., ROSADO A.: Sperm chromatin. Arch. Androl., 2000, 45: 215–225.

  30. 30.

    FILATOV M.V., SEMENOVA E.V., VOROB’EVA O.A., LEON-T’EVA O.A., DROBCHENKO E.A.: Relationship between abnormal sperm chromatin packing and IVF results. Mol. Hum. Reprod., 1999, 5: 825–830.

  31. 31.

    GHAZZAWI I.M., SARRAF M.G., TAHER M.R., KHALIFA F.A.: Comparison of the fertilizing capacity of spermatozoa from ejaculates, epididymal aspirates and testicular biopsies using intracytoplasmic sperm injection. Hum. Reprod., 1998, 13: 348–352.

  32. 32.

    GIL-GUZMAN E., OLLERO M., LOPEZ M.C. et al.: Differential production of reactive oxygen species by subsets of human spermatzoa at different stages of maturation. Hum. Reprod., 2001, 16: 1922–1930.

  33. 33.

    GRECO E., ROMANO S., LACOBELLI M. et al.: ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum. Reprod., 2005, 20: 2590–2594.

  34. 34.

    HALDER A., FAUZDA R., KUMAR A.: Serum inhibin B and follicle-stimulating hormone levels as markers in the evaluation of azoospermic men: a comparison. Andrologia, 2005, 37: 173–179.

  35. 35.

    HANSEN M., BOWER C., MILNE E., DE KLERK N., KURINCZUK J.J.: Assisted reproductive technologies and the riks of birth defects — a systematic review. Hum. Reprod., 2005, 20: 228–338.

  36. 36.

    HOVATTA O., MOILANEN J., VON SMITTEN K., REIMA I.: Testicular needle biopsy, open biopsy epididymal aspiration and intracytoplasmic sperm injection in obstructive azoospermia. Hum. Reprod., 1995, 10: 2595–2599.

  37. 37.

    HU Y., MAXSON W.S., HOFFMAN D.I., ORY S.J., LICHT M.R., EAGER S.: Clinical application of intracytoplasmic sperm injection using in vitro cultured testicular spermatozoa obtained the day before egg retrieval. Fertil. Steril., 1999, 72: 666–669.

  38. 38.

    HUGHES C., LEWIS S., MCKELVEY-MARTIN V., THOMPSON W.: The effects of antioxidant supplementation during Percoll preparation on human sperm DNA integrity. Hum. Reprod., 1998, 13: 1240–1247.

  39. 39.

    IRVINE D.S., TWIGG J.P., GORDON E.L., FULTON N., MILNE P.A., AITKEN R.J.: DNA integrity in human spermatozoa: relationships with semen quality. J. Androl., 2000, 21: 33–44.

  40. 40.

    JOHNSON L., PETTY C.S., PORTER J.C., NEAVES W.B.: Germ cell degeneration during postprophase of meiosis and serum concentrations of gonadotropins in young adult and older adult men. Biol. Reprod., 1984, 31: 779–784.

  41. 41.

    KOLETTIS P., SHARMA R., PASQUALOTTO F., NELSON D., THOMAS A., AGARWAL A.: Effect of seminal oxidative stress on fertility after vasectomy. Fertil. Steril., 1999, 71: 249–255.

  42. 42.

    KRZYZOSIAK J., EVENSON D., PITT C., JOST L., MOLAN P., VISHWANATH R.: Changes in susceptibility of bovine sperm to in situ DNA denaturation during prolonged incubation at ambient temperature under conditions of exposure to reactive oxygen species and nuclease inhibitor. Reprod. Fertil. Dev., 2000, 12: 251–261.

  43. 43.

    KUBOTA R.: Electron microscopic study on the testis after vasectomy in rats and men. Jap. J. Urol., 1969, 60: 373–397.

  44. 44.

    KURINCZUK J.J., BOWER C.: Birth defects in infants conceived by intracytoplasmic sperm injection: an alternative interpretation. Brit. Med. J., 1997, 315 (7118): 1260–1265.

  45. 45.

    LEE J., RICHBURG J.H., YOUNKIN S.C., BOEKELHEIDE K.: The fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology, 1997, 138: 2081–2088.

  46. 46.

    LEE J., RICHBURG J.H., SHIPP E.B., MEISTRICH M.L., BOEKELHEIDE K.: The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in sertoli cell versus germ cell injury of the testis. Endocrinology, 1999, 140: 852–858.

  47. 47.

    LEWIS S.E.M., O’CONNELL M., STEVENSON M., McCLURE N.: An algorithm to predict pregnancy in assisted reproduction. Hum. Reprod., 2004, 19: 1385–1394.

  48. 48.

    LIU J., TSAI Y-L., KATZ E., COMPTON G., GARCIA J.E., BARAMKI T.A.: Outcome of in vitro culture of fresh and frozenthawed human testicular spermatozoa. Hum. Reprod., 1997, 12: 1667–1672.

  49. 49.

    LOPES S., SUN J.G., JURISICOVA A., MERIANO J., CASPER R.F.: Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil. Steril., 1998, 69: 528–532.

  50. 50.

    LUDWIG A.K., KATALINIC A., STEINBICKER V., DIEDRICH K., LUDWIG M.: Antenatal care in singleton pregnancies after ICSI as compared to spontaneous conception: data from a prospective controlled cohort study in Germany. Hum. Reprod., 2005, Nov 25; (Epub ahead of print).

  51. 51.

    McLACHAN R., ROYCE P.: The medical consequences of vasectomy. Curr. Obstet. Gynaec., 1996, 6: 107–110.

  52. 52.

    McVICAR C., O’NEILL D., McCLURE N., CLEMENTS B., McCULLOUGH S., LEWIS S.: Effects of vasectomy on spermatogenesis and fertility outcome after testicular sperm extraction combined with ICSI. Hum. Reprod., 2005, 20: 2795–2800.

  53. 53.

    MOSSAD H., MORSHEDI M., TONER J.P., OEHNINGER S.: Impact of cryopreservation on spermatozoa from infertile men: implications for artificial insemination. Arch. Androl., 1994, 33: 51–57.

  54. 54.

    MOOSANI N., PATTINSON H.A., CARTER M.D.: Chromosomal analysis of sperm from men with idiopathic infertility using sperm karotyping and fluoresence in situ hybridization. Fertil. Steril., 1995, 64: 811–817.

  55. 55.

    MORRIS I.D., ILOTT S., DIXON L., BRISON D.R.: The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum. Reprod., 2002, 17: 990–998.

  56. 56.

    NICOPOULLOS J.D., GILLING-SMITH C., ALMEIDA P.A., RAMSAY J.W.: Effect of time since vasectomy and maternal age on intracytoplasmic sperm injection success in men with obstructive azoospermia after vasectomy. Fertil. Steril., 2004, 82: 367–373.

  57. 57.

    NICOPOULLOS J.D., RAMSAY J.W.A., ALMEIDA P.A., GILLING-SMITH C.: Assisted reproduction in the azoospermic couple (Review). Br. J. Obs. Gynaec., 2004, 111: 1190–1203.

  58. 58.

    NIJS M., OMBELET W.: Intracytoplasmic sperm injection in assisted reproductive technology: an evaluation. Hum. Fertil., 2000, 3: 221–225.

  59. 59.

    NOGUEIRA D., BOURGAIN C., VERHEYEN G., VAN STEIRTEGHEM A.C.: Light and electron microscopic analysis of human testicular spermatozoa and spermatids from frozen and thawed testicular biopsies. Hum. Reprod., 1999, 14: 2041–2049.

  60. 60.

    O’CONNELL M., MCCLURE N., LEWIS S.E.M.: The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum. Reprod., 2002, 17: 704–709.

  61. 61.

    OLDEROID N., DE ANGELIS P., WIGER R., CLAUSEN O.: Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis. Mol. Hum. Reprod., 2001, 7: 403–408.

  62. 62.

    O’NEILL D.A., McVICAR C.M., McCLURE N. et al.: Reduced sperm yield from testicular biopsies of vasectomised men is due to increased apoptosis. Fert. Steril., 2006 (provisional acceptance).

  63. 63.

    PASQUALOTTO F.F., ROSSI-FERRAGUT L.M., ROCHA C.C., ICONELLI A., ORTIZ V., BORGES E.: The efficacy of repeat percutaneous epididymal sperm aspiration procedures. J. Urol., 2003, 169: 1779–2781.

  64. 64.

    POCCIA D.: Remodelling of nucleoproteins during gametogenesis, fertilization, and early development. Int. Rev. Cytol., 1986, 105: 1–65.

  65. 65.

    POTTS J., PASQUALOTTO F., NELSON D., THOMAS A.J., AGARWAL A.: Patients characteristics associated with vasectomy reversal. J. Urol., 1999, 161: 1835–1838.

  66. 66.

    PRINS G.S., DOLGINA R., STUDNEY P., KAPLAN B., ROSS L., NIEDERBERGER C.: Quality of cryopreserved testicular sperm in patients with obstructive and non-obstructive azoospermia. J. Urol., 1999, 161: 1504–1508.

  67. 67.

    RAMASAMY R., YAGEN N., SCHIEGEL P.N.: Structural and functional changes to the testis after conventional versus microdissection testicular sperm extraction. Urology, 2005, 65:1190–1194.

  68. 68.

    RIMM A.A., KATAYAMA A.C., DIAZ M., KATAYAMA K.P.: A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J. Assist. Reprod. Genet., 2004, 21: 437–443.

  69. 69.

    RODRIGUEZ I., ODY C., ARAKI K., GARCIA I., VASSALLI P.: An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J., 1997, 16: 2262–2270.

  70. 70.

    SAKKAS D., URNER F., BIANCHI P.G. et al.: Sperm chromatin abnormalities can influence decondensation after intracytoplasmic sperm injection. Hum. Reprod., 1996, 11: 837–843.

  71. 71.

    SAKKAS D., MANICARDI G., BIZZARO D., BIANCHI P.G.: Possible consequences of preforming ICSI with sperm possessing nuclear DNA damage. Hum. Fertil., 2000, 3: 26–30.

  72. 72.

    SCHILL T., BALS-PRATSCH M., KUPKER W., SANDMANN J., JOHANNISSON R., DIEDRICH K.: Clinical and endocrine follow-up of patients after testicular sperm extraction. Fertil. Steril., 2003, 79: 281–286.

  73. 73.

    SCHLEGEL P.N., SU L.-M.: Physiological consequences of testicular sperm extraction. Hum. Reprod., 1997, 12: 1688–1692.

  74. 74.

    SCHULZE W., THOMS F., KNUTH U.A.: Testicular sperm extraction: comprehensive analysis with simultaneously performed histology in 1418 biopsies from 766 subfertile men. Hum. Reprod., 1999, 14 (Suppl 1): 82–96.

  75. 75.

    SHIGENAGA M.K., HAGEN T.M., AMES B.N.: (1994) Oxidative damage and mitochondrial decay in aging. Proc. Natl Acad. Sci. USA, 1994, 91: 10771–10778.

  76. 76.

    SHUFARO Y., PRUS D., LAUFER N., SIMON A.: Impact of repreated testicular fine needle aspirations (TEFNA) and testicular sperm extraction (TESE) on the microscopic morphology of the testis: an animal model. Hum. Reprod., 2002, 17: 1795–1799.

  77. 77.

    SILBER S.J., VAN STEIRTEGHEM A.C., LIU J., NAGY Z., TOURNAYE H., DEVROEY P.: High fertilization and pregnancy rate after intracytoplasmic sperm injection with spermatozoa obtained from testicular biopsy. Hum. Reprod., 1995, 10: 148–152.

  78. 78.

    SILBER S.J., NAGY Z., DEVROEY P., TOURNAYE H., VAN STEIRTEGHEM A.C.: Distribution of spermatogenesis in the testicles of azoospermic men: the presence or absence of spermatids in the testes of men with germinal failure. Hum. Reprod., 1997, 12: 2422–2428.

  79. 79.

    SOUSA M., CREMADES N., SILVA J., et al.: Predictive value of testicular histology in secretory azoospermic subgroups and clinical outcome after microinjection of fresh and frozen-thawed sperm and spermatids. Hum. Reprod., 2002, 17: 1800–1810.

  80. 80.

    SPANO M., BONDE J.P., HJØLLUND H.I. et al.: Sperm chromatin damage impairs human fertility. Fertil. Steril., 2000, 73: 43–50.

  81. 81.

    ST-JOHN J.C., COOKE I.D., BARRATT C.L.R.: Mitochondrial mutations and male infertility. Nat. Med., 1997, 3: 124–125.

  82. 82.

    STEELE E.K., McCLURE N., LEWIS S.E.M.: A comparison of the morphology of testicular, epididymal, and ejaculated sperm from fertile men and men with obstructive azoospermia. Fertil. Steril., 2000, 73: 1099–1103.

  83. 83.

    STEELE E.K., KELLY J.D., LEWIS S.E.M., et al.: Testicular sperm extraction by Trucut needle and milking seminiferous tubules: a technique with high yield and patient acceptability. Fertil. Steril., 2000, 74: 380–383.

  84. 84.

    STEELE E.K., ELLIS P.K., LEWIS S.E.M., McCLURE N.: Ultrasound, antisperm antibody, and hormone profiles after testicular Trucut biopsy. Fertil. Steril., 2001, 75: 423–428.

  85. 85.

    STEELE E.K., LEWIS S.E.M., McCLURE N.: Azoospermia — ‘to infinity and beyond’. Obstet. Gynaecol., 2002, 4: 71–75.

  86. 86.

    STEGER K., SLAVOV M., FAILING K., WEIDNER W., BERGMANN M.: Effect of vasectomy on sperm nuclear chromatin condensation in the rabbit. J. Androl., 2005, 26: 289–295.

  87. 87.

    TARLATZIS B.C., BILI H.: Survey on intracytoplasmic sperm injection: report from the ESHRE ICSI Task Force. Hum. Reprod., 1998, 13 (Suppl 1): 165–177.

  88. 88.

    TEMPLE-SMITH P.D., SOUTHWICK G.J., YATES C.A., TROUNSON A.O., DE KRETSER D.M.: Human pregnancy by in vitro fertilization (IVF) using sperm aspirated from the epididymis. J. In Vitro Fert. Embryo Transf., 1985, 2: 119–122.

  89. 89.

    TOURNAYE H., LIU J., NAGY P.Z. et al.: Correlation between testicular histology and outcome after intracytoplasmic sperm injection using testicular spermatozoa. Hum. Reprod., 1996, 11: 127–132.

  90. 90.

    TOURNAYE H., VERHEYEN G. NAGY P. et al.: Are there any predictive factors for successful testicular sperm recovery in azoospermic patients. Hum. Reprod., 1997, 12: 80–86.

  91. 91.

    TOURNAYE H., CLASEN K., AYTOZ A., NAGY Z., VAN STEIRTEGHEM A., DEVROEY P.: Fine needle aspiration versus open biopsy for testicular sperm recovery: a controlled study in azoospemic patients with normal spermatogenesis. Hum. Reprod., 1998, 13: 901–904.

  92. 92.

    TWIGG J., FULTON N., GOMEZ E., IRVINE D.S., AITKEN R.J.: Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum. Reprod., 1998, 13: 1429–1436.

  93. 93.

    TWIGG J.P., IRVINE D.S., AITKEN R.J.: Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum. Reprod., 1998, 13: 1864–1871.

  94. 94.

    UBALDI F., NAGY Z.P., RIENZI L. et al.: Reproductive capacity of spermatozoa from men with testicular failure. Hum. Reprod., 1999, 14: 2796–2800.

  95. 95.

    VERHEYEN G., NAGY Z., JORIS H., DE CROO I., TOURNAYE H., VAN STEIRTEGHEM A.: Quality of frozen-thawed testicular sperm and its preclinical use for intracytoplasmic sperm injection into in vitro-matured germinal-vesicle stage oocytes. Fertil. Steril., 1997, 67: 74–80.

  96. 96.

    VERNAEVE V., TOURNAYE H., OSMANAGAOGLU K. et al.: Intracytoplasmic sperm injection with testicular spermatozoa is less successful in men with non-obstructive azoospermia than in men with obstructive azoospermia. Fertil. Steril., 2003, 79: 529–533.

  97. 97.

    VISWANATH R., SHANNON P.: Do sperm cells age? A review of the physiological changes in sperm during storage at ambient temperature. Reprod. Fertil. Dev., 1997, 9: 321–331.

  98. 98.

    WALLACE D.C., LOTT M.R., SHOFFNER J.M., BALLINGER S.: Mitochondrial DNA mutations in epilepsy and neurological disease. Epilepsia, 1994, 35 (Suppl 1): 43–50.

  99. 99.

    WARD W.S., COFFEY D.S.: DNA packaging and organization in mammalian spermatozoa — comparison with somatic-cells. Biol. of Reprod., 1991, 44: 569–574.

  100. 100.

    WENG S.-L., YAYLOR S., MORSHEDI M. et al.: Caspase activity and apoptotic markers in ejaculated human sperm. Mol. Hum. Reprod., 2002, 8: 984–991.

  101. 101.

    WENNERHOLM U.B., BERGH C., HAMBERGER L. et al.: Incidence of congenital malformations in children born after ICSI. Hum. Reprod., 15: 944–948.

  102. 102.

    ZINI A., BIELECKI R., PHANG D., ZENZES M.T.: (2001) Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil. Steril., 2001, 75: 674–677.

Download references

Author information

Correspondence to Sheena E. M. Lewis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lewis, S.E.M. The treatment of obstructive azoospermia by intracytoplasmic sperm injection. Androl. 16, 28–38 (2006) doi:10.1007/BF03034829

Download citation

Key words

  • testicular sperm
  • obstructive azoospermia
  • vasectomy
  • nuclear DNA
  • mitochondrial DNA

Mots clés

  • spermatozoïde testiculaire
  • azoospermie obstructive
  • vasectomie
  • ADN nucléaire
  • ADN mitochondrial