Skip to main content
  • Physiologie
  • Epididyme
  • Published:

Criblage de nouveaux gènes cibles des récepteurs nucléairesdes oxystérols LXRs impliqués dans le maintien de l’épithélium épididymaire et la maturation des spermatozoïdes dans l’épididyme

Screening for LXR target genes involved in the maintenance of mouse caput epididymis structure and function

Resume

Les récepteurs nucléaires des oxystérols LXRx sont impliqués dans l’homéostasie du cholestérol et le métabolisme lipidique. Les souris déficientes pour les 2 isoformes LXRα et LXRβ présentent une perturbation sévère de la structure de l’épithélium des segments 1 et 2 de la tête de l’épididyme ainsi qu’une fragilité des spermatozoïdes. Ces altérations ont pour conséquence d’engendrer une stérilité totale chez les souris mâles âgées de 10 mois.

A ce jour, aucun travail n’a été effectué sur le rôle des LXRs au niveau de l’épididyme. Une lignée cellulaire issue de la tête de l’épididyme murin (cellules B2) a été utilisée pour rechercherin vitro des gènes cibles épididymaires des LXRs. La présence d’une isoforme des LXRs (LXRα) a été mise en évidence par immunocytochimie et la capacité de réponse des cellules B2 à un agoniste synthétique des LXRs (T0901317) a été vérifiée. Ces résultats valident les cellules B2 comme modèle d’étude. Des analyses protéomiques en électrophorèse bidimensionnelle ont été menées sur les cellules B2 traitées au T0901317. Cela a permis d’isoler 8 protéines régulées positivement par les LXRs. Une seule a pu être identifiée: la polyubiquitine, dont l’implication dans l’homéostasie cellulaire du cholestérol a déjà été rapportée.

Abstract

Liver X receptors (LXRs) are involved in cholesterol homeostasis and lipid metabolism.Ixr knock-out mice for the two isoformsIxra andIxrb exhibit severe disruption of the structure of caput epididymidis segment 1 and 2 epithelium and increased sperm fragility. These defects generate infertility in 10-month-old male mice.

The role of LXRs in the epididymis have not yet been investigated. A cell line obtained from mouse caput epididymidis (B2 cells) was used to screen for LXR epididymal target genesin vitro. The presence of one isoform of LXR (LXRα) was detected by immunocytochemistry and the capacity of B2 cells to respond to a synthetic agonist of LXRs (T0901317) was verified. These results validated the use of B2 cells as a model. Bidimensional electrophoresis was performed on B2 cells treated with T0901317. Eight proteins up-regulated by LXRs were isolated. Only one protein has been identified: polyubiquitin, which has already been reported to be involved in cellular cholesterol homeostasis.

References

  1. ABE K., TAKANO H., ITO T.: Ultrastructure of the mouse epididymal duct with special reference to the regional differences of the principal cells. Arch. Histol. Jpn., 1983, 46: 51–68.

    Article  PubMed  CAS  Google Scholar 

  2. ABOU-HAILA A., FAIN-MAUREL M.A.: Regional differences of the proximal part of mouse epididymis: morphological and histochemical characterization. Anat. Rec., 1984, 209: 197–208.

    Article  PubMed  CAS  Google Scholar 

  3. AKMAL K.M., DUFOUR J.M., KIM K.H.: Region-specific localization of retinoic acid receptor-alpha expression in the rat epididymis. Biol. Reprod., 1996, 54: 1111–1119.

    Article  PubMed  CAS  Google Scholar 

  4. ANDERSEN O.M., YEUNG C.H., VORUM H. et al.: Essential role of the apolipoprotein E receptor-2 in sperm development. J. Biol. Chem., 2003, 278: 23989–23995.

    Article  PubMed  CAS  Google Scholar 

  5. APFEL R., BENBROOK D., LERNHARDT E. et al.: A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol. Cell Biol., 1994, 14: 7025–7035.

    PubMed  CAS  Google Scholar 

  6. BARONE R.: Anatomie Comparée des mammifères domestiques. Tome 4 Splanchnologie II. Paris, Vigot, 1990.

    Google Scholar 

  7. BRITAN A., LAREYRE J.J., LEFRANCOIS-MARTINEZ A.M. et al.: Spontaneously immortalized epithelial cells from mouse caput epididymidis. Mol. Cell Endocrinol., 2004, 224: 41–53.

    Article  PubMed  CAS  Google Scholar 

  8. COHEN D.J., ROCHWEGER L., ELLERMAN D.A. et al.: Relationship between the association of rat epididymal protein “DE” with spermatozoa and the behavior and function of the protein. Mol. Reprod. Dev., 2000, 56: 180–188.

    Article  PubMed  CAS  Google Scholar 

  9. COOPER T.G.: Role of the epididymis in mediating changes in the male gamete during maturation. Adv. Exp. Med. Biol., 1995, 377: 87–101.

    PubMed  CAS  Google Scholar 

  10. CORNWALL G.A., CAMERON A., LINDBERG I. et al.: The cystatin-related epididymal spermatogenic protein inhibits the serine protease prohormone convertase 2. Endocrinology, 2003, 144: 901–908.

    Article  PubMed  CAS  Google Scholar 

  11. CORNWALL G.A., HANN S.R.: Specialized gene expression in the epididymis. J. Androl., 1995, 16: 379–383.

    PubMed  CAS  Google Scholar 

  12. CORNWALL G.A., LAREYRE J.J., MATUSIK R.J. et al.: Gene expression and epididymal function. In: Robaire B., Hinton B.T. eds. The epididymis: From molecules to clinical practice. New York, Kluwer Academic/Plenum Publishers, 2002: 169–199.

    Google Scholar 

  13. CROSS N.L.: Role of cholesterol in sperm capacitation. Biol. Reprod., 1998, 59: 7–11.

    Article  PubMed  CAS  Google Scholar 

  14. DACHEUX J.L., GATTI J.L., CASTELLA S. et al.: The epididymal protein. In: Hinton B.T., Turner T.T. eds. The third international conference on the epididymis. New York, The Van Doren Company, 2003, 115–122.

    Google Scholar 

  15. DACHEUX J.L., DACHEUX F.: Protein secretion in the epididymis. In: Robaire B., Hinton B.T. eds. The epididymis: From molecules to clinical practice. New York, Kluwer Academic/Plenum Publishers, 2002: 151–168.

    Google Scholar 

  16. DREVET J.R., LAREYRE J.J., SCHWAAB V. et al.: The PEA3 protein of the Ets oncogene family is a putative transcriptional modulator of the mouse epididymis-specific glutathione peroxidase gene gpx5. Mol. Reprod. Dev., 1998, 49: 131–140.

    Article  PubMed  CAS  Google Scholar 

  17. DUFAURE J.P., DREVET J.R.: La régulation de l’expression des gènes dans l’épididyme. Médecine/Science, 1998, 14: 1392–1398.

    Google Scholar 

  18. EDDY E.M., WASHBURN T.F., BUNCH D.O. et al.: Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology, 1996, 137: 4796–4805.

    Article  PubMed  CAS  Google Scholar 

  19. FRENOUX J.M., VERNET P., VOLLE D.H. et al.: Nuclear oxysterol receptors, LXR, are involved in the maintenance of mouse caput epididymidis structure and sperm post-testicular maturational events. J. Mol. Endocrinol., 2004, 33: 361–375.

    Article  PubMed  CAS  Google Scholar 

  20. FU X., MENKE J.G., CHEN Y. et al.: 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J. Biol. Chem., 2001, 276: 38378–38387.

    Article  PubMed  CAS  Google Scholar 

  21. GARRETT J.E., GARRETT S.H., DOUGLASS J.A.: Spermatozoa-associated factor regulates proenkephalin gene expression in the rat epididymis. Mol. Endocrinol., 1990, 4: 108–118.

    Article  PubMed  CAS  Google Scholar 

  22. GAUDREAULT C., LE GARE C., BERUBE B., SULLIVAN R.: Hamster sperm protein, p26h: a member of the short-chain dehydrogenase/reductase superfamily. Biol. Reprod., 1999, 61: 264–273.

    Article  PubMed  CAS  Google Scholar 

  23. GLOVER T.D., NICANDER L.: Some aspects of structure and function in the mammalian epididymis. J. Reprod. Fertil., Suppl, 1971, 13: 39–50.

    Google Scholar 

  24. HAIDL G., OPPER C.: Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation. Hum. Reprod., 1997, 12: 2720–2723.

    Article  PubMed  CAS  Google Scholar 

  25. HALL J.C., HADLEY J., DOMAN T.: Correlation between changes in rat sperm membrane lipids, protein, and the membrane physical state during epididymal maturation. J. Androl., 1991, 12: 76–87.

    PubMed  CAS  Google Scholar 

  26. HALL J.C., KILLIAN G.J.: Changes in rat sperm membrane glycosidase activities and carbohydrate and protein contents associated with epididymal transit. Biol. Reprod., 1987, 36: 709–718.

    Article  PubMed  CAS  Google Scholar 

  27. HAMILTON D.: Anatomy of mamalian male accessory reproductive organs. In: Laming G. ed. Marshall’s Physiology of Reproduction, reproduction in the Male. Edinburg, Churchill Livingston, 1990, Vol 2: 691–746.

    Google Scholar 

  28. HAMPTON R.Y.: Proteolysis and sterol regulation. Ann. Rev. Cell Dev. Biol., 2002, 18: 345–378.

    Article  CAS  Google Scholar 

  29. HESS R.A., BUNICK D., LEE K.H. et al.: A role for oestrogens in the male reproductive system. Nature, 1997, 390: 509–512.

    Article  PubMed  CAS  Google Scholar 

  30. HESS R.A., BUNICK D., LUBAHN D.B., ZHOU Q., BOUMA J.: Morphologic changes in efferent ductules and epididymis in estrogen receptor-alpha knockout mice. J. Androl., 2000, 21: 107–121.

    PubMed  CAS  Google Scholar 

  31. HINTON B.T., LAN Z.J., RUDOLPH D.B., LABUS J.C., LYE R.J.: Testicular regulation of epididymal gene expression. J. Reprod. Fertil., Suppl, 1998, 53: 47–57.

    CAS  Google Scholar 

  32. HUANG L.S., VOYIAZIAKIS E., CHEN H.L., RUBIN E.M., GORDON J.W.: A novel functional role for apolipoprotein B in male infertility in heterozygous apolipoprotein B knockout mice. Proc. Natl Acad. Sci. USA, 1996, 93: 10903–10907.

    Article  PubMed  CAS  Google Scholar 

  33. JANOWSKI B.A., GROGAN M.J., JONES S.A. et al.: Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc. Natl Acad. Sci. USA, 1999, 96: 266–271.

    Article  PubMed  CAS  Google Scholar 

  34. KIRCHHOFF C.: Gene expression in the epididymis. Int. Rev. Cytol., 1999, 188: 133–202.

    Article  PubMed  CAS  Google Scholar 

  35. KIRSTEN M.R., GERTRUD U.S., KNUT R.S. et al.: The liver X receptor is essential for maintaining cholesterol homeostasis in the testis. Endocrinology, 2005, 146: 2519–2530.

    Article  CAS  Google Scholar 

  36. LAN Z.J., LABUS J.C., HINTON B.T.: Regulation of gammaglutamyl transpeptidase catalytic activity and protein level in the initial segment of the rat epididymis by testicular factors: role of basic fibroblast growth factor. Biol. Reprod., 1998, 58: 197–206.

    Article  PubMed  CAS  Google Scholar 

  37. LAREYRE J.J., CLAESSENS F., ROMBAUTS W., DUFAURE J.P., DREVET J.R.: Characterization of an androgen response element within the promoter of the epididymis-specific murine glutathione peroxidase 5 gene. Mol. Cell Endocrinol., 1997, 129: 33–46.

    Article  PubMed  CAS  Google Scholar 

  38. LAREYRE J.J., MATTEI M.G., KASPER S. et al.: Structure and putative function of a murine epididymal retinoic acid-binding protein (mE-RABP). J. Reprod. Fertil. Suppl, 1998, 53: 59–65.

    CAS  Google Scholar 

  39. LEGARE C., BERUBE B., BOUE F. et al.: Hamster sperm antigen P26h is a phosphatidylinositol-anchored protein. Mol. Reprod. Dev., 1999, 52: 225–233.

    Article  PubMed  CAS  Google Scholar 

  40. LEGARE C., GAUDREAULT C., ST-JACQUES S., SULLIVAN R.: P34H sperm protein is preferentially expressed by the human corpus epididymidis. Endocrinology, 1999, 140: 3318–3327.

    Article  PubMed  CAS  Google Scholar 

  41. LOBACCARO J.M., REPA J.J., LU T.T. et al.: Regulation of lipid metabolism by the orphan nuclear receptors. Ann. Endocrinol. (Paris), 2001, 62: 239–247.

    CAS  Google Scholar 

  42. LU T.T., REPA J.J., MANGELSDORF D.J.: Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J. Biol. Chem., 2001, 276: 37735–37738.

    PubMed  CAS  Google Scholar 

  43. MERCIER-BODARD C., ALFSEN A., BAULIEU E.E.: Sex steroid binding plasma protein (SBP). Acta Endocrinol (Copenh), Suppl. 1970, 147: 204–224.

    CAS  Google Scholar 

  44. MOORE H.D., BEDFORD J.M.: The differential absorptive activity of epithelial cells of the rat epididymus before and after castration. Anat. Rec., 1979, 193: 313–327.

    Article  PubMed  CAS  Google Scholar 

  45. MORTZ E., KROGH T.N., VORUM H., GÖRG A.: Improved silver staining protocols for high sensivity protein identification using matrix-assisted laser desorption/ionization time of flight analysis. Proteomics, 2001, 1: 1359–1363.

    Article  PubMed  CAS  Google Scholar 

  46. NATH D., MAJUMDER G.C.: Maturation-dependent modification of the protein phosphorylation profile of isolated goat sperm plasma membrane. J. Reprod. Fertil., 1999, 115: 29–37.

    Article  PubMed  CAS  Google Scholar 

  47. PEET D.J., TURLEY S.D., MA W. et al.: Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell, 1998, 93: 693–704.

    Article  PubMed  CAS  Google Scholar 

  48. PERRY A.C., JONES R., HALL L.: Isolation and characterization of a rat cDNA clone encoding a secreted superoxide dismutase reveals the epididymis to be a major site of its expression. Biochem. J., 1993, 293: 21–25.

    PubMed  CAS  Google Scholar 

  49. POLLANEN P., COOPER T.G.: Immunology of the testicular excurrent ducts. J. Reprod. Immunol., 1994, 26: 167–216.

    Article  PubMed  CAS  Google Scholar 

  50. RAVID T., DOOLMAN R., AVNER R., HARATS D., ROITELMAN J.: The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem., 2000, 275: 35840–35847.

    Article  PubMed  CAS  Google Scholar 

  51. REBECCA L.W., GORDON C., MAYER R.J.: Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Reviews, 2005, 6: 599–609.

    Article  CAS  Google Scholar 

  52. REPA J.J., MANGELSDORF D.J.: The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Ann. Rev. Cell Biol., 2000, 16: 59–81.

    Google Scholar 

  53. ROBAIRE B., HERMO L.: Efferents ducts, epididymis, vas deferens: structure, functions, and their regulation. In: Knobil E. ed. The physiology of reproduction. New York, Raven Press, 1988: 999–1080

    Google Scholar 

  54. ROBAIRE B., JERVIS K.M., EZER N.: Cell Dynamics and Death in the Epididymal Epithelium. In: Hinton B.T., Turner T.T. eds. The third international conference on the epididymis. New York, The Van Doren Company, 2003: 35–49.

    Google Scholar 

  55. SHALGI R., SELIGMAN J., KOSOWER NS.: Dynamics of the thiol status of rat spermatozoa during maturation: analysis with the fluorescent labeling agent monobromobimane. Biol. Reprod., 1989, 40: 1037–1045.

    Article  PubMed  CAS  Google Scholar 

  56. SINOWATZ F., VOLGMAYR J.K., GABIUS H.J., FRIESS A.E.: Cytochemical analysis of mammalian sperm membranes. Prog. Histochem. Cytochem., 1989, 19: 1–74.

    PubMed  CAS  Google Scholar 

  57. SORANZO L., DADOUNE J.P., FAIN-MAUREL M.A.: Segmentation of the epididymal duct in mouse: an ultrastructural study. Reprod. Nutr. Dev., 1982, 22: 999–1012.

    Article  PubMed  CAS  Google Scholar 

  58. TEBOUL M., ENMARK E., LI Q., WIKSTROM A.C., PELTOHUIKKO M., GUSTAFSSON J.A.: OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc. Natl. Acad. Sci. USA, 1995, 92: 2096–2100.

    Article  PubMed  CAS  Google Scholar 

  59. THUILLIER P., BAILLIE R., SHA X., CLARKE S.D.: Cytosolic and nuclear distribution of PPARgamma2 in differentiating 3T3-L1 preadipocytes. J. Lipid. Res., 1998, 39: 2329–2338.

    PubMed  CAS  Google Scholar 

  60. TRAMER F., ROCCO F., MICALI F., SANDRI G., PANFILI E.: Role of luminal fluid glycosyltransferases and glycosidases in the modification of rat sperm plasma membrane glycoproteins during epididymal maturation. J. Reprod. Fertil., Suppl. 1998, 53: 85–97.

    Google Scholar 

  61. TULSIANI D.R., SKUDLAREK M.D., HOLLAND M.K.: Orgebin-Crist M.C.: Glycosylation of rat sperm plasma membrane during epididymal maturation. Biol. Reprod., 1993, 48: 417–428.

    Article  PubMed  CAS  Google Scholar 

  62. TURNER T.T., AVERY E.A., SAWCHUK T.J.: Assessment of protein synthesis and secretion by rat seminiferous and epididymal tubules in vivo. Int. J. Androl., 1994, 17: 205–213.

    Article  PubMed  CAS  Google Scholar 

  63. VERNET P., RIGAUDIERE N., GHYSELINCK N., DUFAURE J.P., DREVET J.R.: In vitro expression of a mouse tissue specific glutahione-peroxidase-like protein lacking the selenocysteine can protect stably transfected mammalian cells against oxidative damage. Biochem. Cell Biol., 1996, 74: 125–131.

    Article  PubMed  CAS  Google Scholar 

  64. VISCONTI P.E., NING X., FORNES M.W. et al.: Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev. Biol., 1999, 214: 429–443.

    Article  PubMed  CAS  Google Scholar 

  65. VOLLE D.H., DÉCHELOTTE P., CUMMINS C.C. et al.: Deficient mice for oxysterol nuclear receptors LXRs show a rapid decrease of fertility associated with testicular destructuration. 2004 (en cours de préparation).

  66. VOLLE D.H., FRENOUX J.M., MOUZAT K. et al.: Rôle des récepteurs nucléaires des oxystérols LXR dans la régulation de l’homéostasie du cholestérol au niveau de l’appareil reproducteur mâle. Andrologie, 2005, 15: 151–159.

    Article  Google Scholar 

  67. WAN Y.J., WANG L., WU T.C.: Detection of retinoic acid receptor mRNA in rat tissues by reverse transcriptase-polymerase chain reaction. J. Mol. Endocrinol., 1992, 9: 291–294.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël R. Drevet.

Additional information

Prix du meilleur DEA-SALF 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocer, A., Saez, F., Mouzat, K. et al. Criblage de nouveaux gènes cibles des récepteurs nucléairesdes oxystérols LXRs impliqués dans le maintien de l’épithélium épididymaire et la maturation des spermatozoïdes dans l’épididyme. Androl. 16, 11–23 (2006). https://doi.org/10.1007/BF03034827

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034827

Mots clés

Key-words