Skip to main content
  • Vieillissement 0652 0147 V
  • Vieillissement et Reproduction
  • Published:

Influence du vieillessement sur la spermatogenèse: étude histologique et cytogénétique moléculaire au niveau testiculaire chez 46 sujets âgés de 29 à 102 ans

Influence of ageing on spermatogenesis: testicular histomorphometric and cytogenetic study in elderly men (61 to 102 years)

Resume

L'effet délétère de l'âge maternel sur le risque d'anomalie méiotique est bien établi, mais il n'en est pas de même pour l'effet de l'âge paternel. Nous avons étudié l'influence du vieillissement sur la spermatogenèse évaluée par l'histologie testiculaire évaluée par histomorphomètrie et sur le taux d'anomalies méiotiques testiculaires évalué par la technique d'hybridation in situ fluorescente (FISH) pour les chromosomes X, Y et 18. L'étude a comporté 46 hommes âgés de 29 à 102 ans (36 sujets âgés et 10 témoins). L'analyse histomorphomètrique des biopsies testiculaires a concerné les tubes séminifères: surface, épaisseur de la membrane propre, densité en cellules de Sertoli, en spermatogonies, en spermatocytes et en spermatozoïdes, ainsi que le tissu interstitiel: nombre de groupements des cellules de Leydig par champ, surface occupée par les cellules de Leydig, et densité. Cette étude nous a permis de classer les sujets âgés (n=36) en trois groupes: 17 sujets âgés de 61 à 95 ans à spermatogenèse complète (groupe 1), 4 sujets à spermiogenèse arrêtée (groupe 2) et 15 sujets avec un arrêt précoce de la spermatogenèse (cellules diploïdes) (groupe 3). Les variations interindividuelles étaient très importantes. L'épaisseur de la membrane propre paraît être le paramètre le mieux corrélé à la conservation de la spermatogenèse. Nous avons analysé par FISH un total de 10000 cellules postméiotiques dont 4738 cellules post méiotiques dans le groupe 1 et un total de 4882 cellules post méiotiques chez les sujets jeunes témoins. Les taux des cellules normales haploïdes X18 et Y18 représentent respectivement 50,76% et 47,95% dans le groupe de sujets âgés (groupe 1), 50,35% et 48,55% dans le groupe des témoins. Le taux d'aneuploïdie totale est de 1,29% chez les sujets âgés du groupe 1 et de 1,10% chez le groupe témoin. Pour le groupe 2 (sujets avec un arrêt de la spermiogenèse), les pourcentages de cellules X18, Y18 et le taux d'aneuploïdie étaient respectivement 47,96%, 37,75% et 14,28% au niveau des spermatides (n=98). Ce taux d'anomalies de 14,28% est significativement accru, comparé aux résultats du groupe 1 et des témoins.

Au total nous avons conclu qu'une spermatogenèse peut être conservée à un âge très avancé (95 ans), que le taux d'aneuploïdie postméiotique des sujets âgés à spermatogenèse complète n'est pas globalement différent de celui qui est observé chez des sujets jeunes témoins et que l'incidence des aneuploïdies post-méiotiques semble être plus élevée lorsque la spermiogenèse est arrêtée (14,28%versus 1,10%).

Abstract

The harmful effect of maternal age on abnormal meiotic behaviour has been clearly established, but little is known about the effect of paternal age on chromosome malsegregations and the results of studies on this question are fairly controversial. The purpose of this study was to evaluate the influence of ageing on testicular histology and aneuploidy rate in testicular post-meiotic cells. A possible age-related risk has been suggested by the increased frequency of medical assisted reproduction techniques for older men.

We analysed 36 testicular samples from subjects aged 61–102 years by histology and histomorphometry. We examined testicular cells with fluorescence in situ hybridisation (FISH). We studied six histological sections (20 cross-sectioned tubules) by computer-assisted morphometric analysis (Histolab). The study was based on the following parameters: for seminiferous tubules: surface area, thickness of the basement membrane, nucleus density (Sertoli cells, spermatogonia, spermatocytes and spermatozoids); for interstitial tissue: cluster number and surface area occupied by the Leydig cells, nucleus density. We analysed cells by FISH and a set of three probes X, Y and 18 (Abboto). The results were compared to those of a control group of testicular biopsies from 10 subjects (29–40 years) with obstructive azoospermia and normal histology.

Results: The histomorphometric study showed various alterations including: thickening of the basement membrane when spermatogenesis was arrested. The number of germinal cells and the number of Sertoli cells decreased with increasing age and Leydig cell hypertrophy was observed with increasing age. Complete spermatogenesis was observed in men up to the age of 95 years old. The most sensitive step was pachytene. Spermatogonia can persist until the age of 98 years. The 36 elderly men were divided into 3 groups: preserved spermatogenesis (17 subjects; group 1), arrested spermatogenesis (4 subjects; group 2) and early disrupted spermatogenesis with only diploid cells or no cells (15 subjects; group 3).

For the control group, post-meiotic cells (n=4,882) showed 50.35% X18, 48.55% Y18 and 1.1% of cells with aneuploidy. For elderly subjects with preserved spermatogenesis, post-meiotic cell analysis (n=4,738) showed 50.76% X18, 47.95% Y18 and 1.29% of cells with aneuploidy. Subjects with arrested spermatogenesis presented 47.96% X18, 37.75%Y18 and the aneuploidy rate among spermatids (n=98) was 14.28%. This rate was higher than those observed in controls and in group 1. In conclusion, we observed that spermatogenesis was possible until an advanced age (95 years). There appears to be an increased incidence of post-meiotic aneuploidy in the case of arrested spermatogenesis (14.28 vs 1.10%). The aneuploidy rate in the group of subjects with preserved spermatogenesis was not statistically different from that observed in the control group.

References

  1. ARAN B., BLANCO J., VIDAL F. et al.: Screening for abnormalities of chromosomes X, Y, and 18 and for diploidy in spermatozoa from infertile men participating in anin vitro fertilization-intracytoplasmic sperm injection program. Fertil. Steril., 1999, 72: 696–701.

    Article  PubMed  CAS  Google Scholar 

  2. ASADA H., SUEOKA K., HASHIBA T., KUROSHIMA M., KOBAYASHI N., YOSHIMURA Y.: The effects of age and abnormal sperm count on the non disjunction of spermatozoa. J. Assist. Reprod. Genet., 2000, 17: 51–59.

    Article  PubMed  CAS  Google Scholar 

  3. AUROUX M.: Age du père et aptitude au développement. Contracept. Fertil. Sex., 1992, 20: 942–945.

    CAS  Google Scholar 

  4. BERGERE M., WAINER R., NATAF V. et al.: Biopsied testis cells of four 47,XXY patients: fluorescencein situ hybridization and ICSI results. Hum. Reprod., 2002, 17: 32–37.

    Article  PubMed  Google Scholar 

  5. BICCHIERAY L., BENFTIMA I., ALBERT M. et al.: Analyse morphométrique semi quantitative de l'histologie testiculaire au cours du vieillissement. Andrologie, 2003, 13: 288–297.

    Google Scholar 

  6. CROW J.F.: The high spontaneous mutation rate: is it a health risk? Proc. Natl. Acad. Sci., 1997, 94: 8380–8386.

    Article  PubMed  CAS  Google Scholar 

  7. ESKENAZI B., WYROBEK A.J., SLOTER E. et al.: The association of age and semen quality in healthy men. Hum. Reprod., 2003, 18: 447–454.

    Article  PubMed  CAS  Google Scholar 

  8. GRIFFIN D.K., ABRUZZO M.A., MILLIE E.A. et al.: Non-disjunction in human sperm: evidence for an effect of increasing paternal age. Hum. Mol. Genet., 1995, 4: 2227–2232.

    Article  PubMed  CAS  Google Scholar 

  9. GUTTENBACH M., KOHN F.M., ENGEL W., SCHMID M.: Meiotic no disjunction of chromosomes 1, 17, 18, X, and Y in men more than 80 years of age. Biol. Reprod., 2000, 63: 1727–1729.

    Article  PubMed  CAS  Google Scholar 

  10. HASSOLD T., BENHAM F., LEPPERT M.: Cytogenetic and molecular analysis of sex-chromosome monosomy. Am. J. Hum. Genet., 1988, 42: 534–541.

    PubMed  CAS  Google Scholar 

  11. HOLSTEIN A.F.: Spermatogenesis in the aged—a borderland between normal and pathologic anatomy. Urologe A, 1986, 25: 130–137.

    PubMed  CAS  Google Scholar 

  12. JOHNSON L.J.: Spermatogenesis and aging in the human. J. Androl., 1986: 7: 331–354.

    PubMed  CAS  Google Scholar 

  13. KALER L.W., NEAVES W.B.: Attrition of the human Leydig cell population with advancing age. Anat. Rec., 1978, 192: 513–518.

    Article  PubMed  CAS  Google Scholar 

  14. KADEN R.: Testicular histology in the aging man. Fortschr. Med., 1975, 93: 1545–1549.

    PubMed  CAS  Google Scholar 

  15. KIDD S.A., ESKENAZI B., WYROBEK A.J.: Effects of male age on semen quality and fertility. Fertil. Steril., 2001, 75: 237–248.

    Article  PubMed  CAS  Google Scholar 

  16. KOTHARI L.K., GUPTA A.S.: Effect of ageing on the volume, structure and total Leydig cell content of the human testis. Int. J. Fertil., 1974, 19: 140–146.

    PubMed  CAS  Google Scholar 

  17. LANSAC J.: Delayed parenting. Is delayed childbearing a good thing? Hum. Reprod., 1995, 10: 1033–1035.

    PubMed  CAS  Google Scholar 

  18. LOWE X., ESKENAZI B., NELSON D.O., KIDD S., ALME A., WYROBEK A.J.: Frequency of XY sperm increases with age in fathers of boys with Klinefelter syndrome. Am. J. Hum. Genet., 2001, 69: 1046–1054.

    Article  PubMed  CAS  Google Scholar 

  19. LUETJENS C.M., ROLF C., GASSNER P., WERNY J.E., NIESCHLAG E.: Sperm aneuploidy rates in younger and older men. Hum. Reprod., 2002, 17: 1826–1832.

    Article  PubMed  CAS  Google Scholar 

  20. MANIERI C., FORNENGO R., MOLINATTI G.M.: Male fertility in the elderly. Arch. Ital. Urol. Androl., 1993, 65: 501–505.

    PubMed  CAS  Google Scholar 

  21. MARTIN R.H., SPRIGGS E., KO E., RADEMAKER A.W.: The relationship between paternal age, sex ratios, and aneuploidy frequencies in human sperm, as assessed by multicolor FISH. Am. J. Hum. Genet., 1995, 57: 1395–1399.

    PubMed  CAS  Google Scholar 

  22. MATEIZEL I., VERHEYEN G., VAN ASSCHE E., TOURNAYE H., LIEBAERS I., VAN STEIRTEGHEM A.: FISH analysis of chromosome X, Y and 18 abnormalities in testicular sperm from azoospermic patients. Hum. Reprod., 2002, 17: 2249–2257.

    Article  PubMed  CAS  Google Scholar 

  23. NEAVES W.B., JOHNSON L., PORTER J.C., PARKER C.R. Jr, PETTY C.S.: Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J. Clin. Endocrinol. Metab., 1984, 59: 756–763.

    Article  PubMed  CAS  Google Scholar 

  24. NICOLAIDIS P., PETERSEN M.B.: Origin and mechanisms of non-disjunction in human autosomal trisomies. Hum. Reprod., 1998, 13: 313–319.

    Article  PubMed  CAS  Google Scholar 

  25. NISTAL M., CODESAL J., PANIAGUA R., SANTAMARIA L.: Decrease in the number of human Ap and Ad spermatogonia and in the Ap/Ad ratio with advancing age. New data on the spermatogonial stem cell. J. Androl., 1987, 8: 64–68.

    PubMed  CAS  Google Scholar 

  26. PANIAGUA R., AMAT P., NISTAL M., MARTIN A.: Ultrastructural changes in Sertoli cells in ageing humans. J. Androl., 1985, 8: 295–312.

    Article  CAS  Google Scholar 

  27. PANIAGUA R., AMAT P., NISTAL M., MARTIN A.: Ultrastructure of Leydig cells in human ageing testes. J. Anat., 1986, 146: 173–183.

    PubMed  CAS  Google Scholar 

  28. PELLESTOR F., ANDREO B., ARNAL F., HUMEAU C., DEMAILLE J.: Maternal aging and chromosomal abnormalities: new data drawn fromin vitro unfertilized human oocytes. Hum. Genet., 2003, 112: 195–203.

    PubMed  Google Scholar 

  29. PETERSEN P.M., PAKKENBERG B.: Stereological quantitation of Leydig and Sertoli cells in the testis from young and old men. Image Anal. Stereol., 2000, 19: 215–218.

    Google Scholar 

  30. REGADERA J., NISTAL M., PANIAGUA R.: Testis, epididymis, and spermatic cord in elderly men. Correlation of angiographic and histologic studies with systemic arteriosclerosis. Arch. Pathol. Lab. Med., 1985, 109: 663–667.

    PubMed  CAS  Google Scholar 

  31. RIVES N., LANGLOIS G., BORDES A., SIMEON N., MACE B.: Cytogenetic analysis of spermatozoa from males aged between 47 and 71 years. J. Med. Genet., 2002, 39: 63E.

    Article  Google Scholar 

  32. ROBBINS W.A., BAULCH J.E., MOORE D. 2nd, WEIER H.U., BLAKEY D., WYROBEK A.J.: Three-probe fluorescencein situ hybridization to assess chromosome X, Y, and 8 aneuploidy in sperm of 14 men from two healthy groups: evidence for a paternal age effect on sperm aneuploidy. Reprod. Fertil. Dev., 1995, 7: 799–809.

    Article  PubMed  CAS  Google Scholar 

  33. RUSSELL L.D., PETERSON R.N.: Determination of the elongate spermatid-Sertoli cell ratio in various mammals. J. Reprod. Fertil., 1984, 70: 635–641.

    Article  PubMed  CAS  Google Scholar 

  34. RYU H.M., LIN W.W., LAMB D.J., CHUANG W., LIPSHULTZ L.I., BISCHOFF F.Z.: Increased chromosome X, Y, and 18 nondisjunction in sperm from infertile patients that were identified as normal by strict morphology: implication for intracytoplasmic sperm injection. Fertil. Steril., 2001, 76: 879–883.

    Article  PubMed  CAS  Google Scholar 

  35. SASANO N., ICHIJO S.: Vascular patterns of the human testis with special reference to its senile changes. Tohoku J. Exp. Med., 1969, 99: 269–280.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mbarka Dakouane.

Additional information

Bourse 2003 de la SALF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dakouane, M., Bicchieray, L., Bergere, M. et al. Influence du vieillessement sur la spermatogenèse: étude histologique et cytogénétique moléculaire au niveau testiculaire chez 46 sujets âgés de 29 à 102 ans. Androl. 14, 197–205 (2004). https://doi.org/10.1007/BF03034795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034795

Mots clés

Key words