Skip to main content

Advertisement

Spermatogenèsein vitro: une nouvelle voie de recherche

In vitro spermatogenesis: a new way of investigations

Résumé

Nous avons mis au point au laboratoire deux systèmes de coculture permettant à certaines étapes de la différenciation de cellules germinales mâles mâles de rat et de souris de s’effectuer in vitro. Le premier système est une coculture de spermatocytes pachytènes de rats adultes et de cellules de Sertoli provenant d’animaux de 20 jours. Dans le second système de petits fragments de tubes séminifères sont ensemencés. De cette façon les jonctions intercellulaires qui sont présentsin vivo sont mieux maintenuesin vitro; de plus chaque type de cellule germinale présent dans les fragments de tubules au moment de l’ensemencement peut être étudié. Nos résultats ont montré que les deux divisions méiotiques peuvent se dérouler au cours d’une période de 2 à 4 semaines de culture. Ces résultats devraient avoir des applications dans différents domaines: recherche fondamentale, toxicologie, études cliniques et biotechnologies. Cependant, quelques améliorations et vérifications sont encore nécessaires pour établir la faisabilité et l’innocuité de ces procédures.

Abstract

Studies in our laboratory have aimed to settle two culture systems allowing some steps of rodent spermatogenic cell differentiation to occurin vitro. The first system is a coculture of pachytene spermatocytes from adult rats together with Sertoli cells from 20-day-old animals. In the second system, small pieces of spermatogenic tubules are seeded. In that way the cell-cell junctions which are presentin vivo are better maintainedin vitro; in addition every type of germ cell present in the tubule segments at the time of seeding can be studied. Our results have shown that the two meiotic divisions or even most of the meiotic process can occur over a 2 to 4 week-culture period. These results should have applications in basic research, toxicology, clinical studies and biotechnology. However, for these latter, some improvements and verifications are still needed in order to assess the feasibility and the innocuity of these procedures.

References

  1. 1.

    AMAT J.A., FIELDS K.L., SCHUBART U.K.: Stagespecific expression of phosphoprotein p19 during spermatogenesis in the rat. Mol. Reprod. Dev., 1990, 26: 383–390.

  2. 2.

    BRINSTER R.L., ZIMMERMANN J.W.: Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA., 1994, 91: 11298–11302.

  3. 3.

    CLERMONT Y., LEBLOND C.P., MESSIER B.: Durée du cycle de l’épithélium séminal du rat. Arch. Anat. Micr. Morph. Exp., 1959, 48: 37–56.

  4. 4.

    DUPAIX A., PINEAU C., PIQUET-PELLORCE C., JÉGOU B.: Paracrine and autocrine regulations of spermatogenesis. In: Hamamah S., Mieusset R. eds. Research in Male Gametes: Production and quality. Montrouge, Editions INSERM, 1996: 47–63.

  5. 5.

    EDDY E.M.: ‘Chauvinist genes’ of male germ cells: gene expression during mouse spermatogenesis. Reprod. Fert. Develop., 1995, 7: 695–704.

  6. 6.

    FALLS J.G., PULFORDD J., WYLIE A.A., JIRTLE R.L.: Genomic imprinting: implications for human disease. Am. J. Pathol., 1999, 154: 635–647.

  7. 7.

    HAKOVIRTA H., SYED V., JÉGOU B., PARVINEN M.: Function of Interleukin-6 as an inhibitor of meiotic DNA synthesis in the rat seminiferous epithelium. Mol. Cell. Endocrinol., 1995, 108: 193–198.

  8. 8.

    HEIDARAN M.A., KISTLER W.S.: Transcriptional and translational control of the message for transition protein 1, a major chromosomal protein of mammalian spermatids. J. Biol. Chem., 1987, 262: 13309–13315.

  9. 9.

    HUE D., STAUB C., PERRARD-SAPORI M.H.et al.: Meiotic differentiation of germinal cells in three-week cultures of whole cell population from rat seminiferous tubules. Biol. Reprod., 1998, 59: 379–387.

  10. 10.

    KIERSZENBAUM A.L.: Mammalian spermatogenesis in vivo and in vitro—a partnership of spermatogenic and somatic cell lineages. Endocr. Rev., 1994, 15: 116–134.

  11. 11.

    KIM Y.J., HWANG I., TRES L.L., KIERSZENBAUM A.L., CHAE C.B.: Molecular cloning and differential expression of somatic and testis-specific H2B histone genes during rat spermatogenesis. Dev. Biol., 1987, 124: 23–34.

  12. 12.

    KLEENE K.C., FLYNN J.F.: Characterization of a cDNA clone encoding a basic protein, TP2, involved in chromatin condensation during spermiogenesis in the mouse. J. Biol. Chem., 1987, 262: 17272–17277.

  13. 13.

    LATHAM K.E., MCGRATH J., SOLTER D.: Mechanistic and developmental aspects of genetic imprinting in mammals. Int. Rev. Cytol., 1995, 160: 53–98.

  14. 14.

    LEJEUNE H., DURAND P.: Conservation de tissu testiculaire et maturation in vitro de la lignée germinale pour préservation dupotentiel de reproduction avant traitement anticancéreux chez le garçon prépubère. Andrologie, 1999, 9: 498–504.

  15. 15.

    MATHER J.P., ATTIE K.M., WOODRUFF T.K., RICE G.C., PHILLIPS D.M.: Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology, 1990, 127: 3206–3214.

  16. 16.

    MAUDUIT C., BENAHMED M.: Growth factors in the testis development and function. In: Hamamah S., Mieusset R. eds. Research in Male Gametes: Production and quality. Montrouge, Editions INSERM, 1996: 3–45.

  17. 17.

    O’DONNELL L., McLACHLAN, R.I., WREFORD N.G., DE KRETSER D.M., ROBERTSON D.M.: Testosterone withdrawal promotes stage-specific detachment of round spermatids from the rat seminiferous epithelium. Biol. Reprod., 1996, 55: 895–901.

  18. 18.

    OGURA A., MATSUDA J., YANAGIMACHI R.: Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc. Natl. Acad. Sci. USA, 1994, 91: 7460–7462.

  19. 19.

    OGURA A., YANAGIMACHI R.: Round spermatid nuclei injected into hamster oocytes form pronuclei and participate in syngamy. Biol. Reprod. 1993, 48: 219.

  20. 20.

    PARVINEN M.: Regulation of the seminiferous epithelium. Endocr. Rev., 1992, 3: 404–417.

  21. 21.

    PERRARD-SAPORI M.H., VIGIER M., HUE D., STAUB C., WEISS M., DURAND P.: Spermatogenèse murine in vitro: étude cytologique de l’étape méiotique. Contracept. Fertil. Sex., 1997, 25: 556–564.

  22. 22.

    RUSSELL L.D., ETTLIN R.A., SNHAHIKIM A.P., CLEGG E.D.: Mammalian spermatogenesis. In: Histological and Histopathological Evaluation of the Testis. Clearwater, Cache River Press, 1990: 1–40.

  23. 23.

    SKINNER M.K.: Cell-cell interactions in the testis. Endocr. Rev., 1991, 12: 45–77.

  24. 24.

    SOFIKITIS N., ZAROS P., KOUTSELINIS A., MOURTZINTS D., LOUTRADIS D., GLANZOUNIS G.: Achievement of pregnancy after injection of round spermatid nuclei into rabbit oocytes and embryo transfer: a possible mode of treatment for men with spermatogenic arrest at the spermatid stage. J. Urol., 1994, 5, Suppl. 151: abstract.

  25. 25.

    STAUB C., HUE D., NICOLLE J.C., PERRARDSAPORI M.H., SEGRETAIN D., DURAND P.: The whole meiotic process can occur in vitro in untransformed rat spermatogenic cells. Exp. Cell. Res. 2000: (sous presse)

  26. 26.

    TESARIK J., BAHCECI M., OZCAN C., GRECO E., MENDOZA C.: Restoration of fertility by in vitro spermatogenesis. Lancet, 1999, 353: 555–556.

  27. 27.

    TESARIK J., MENDOZA C., TESTART J.: Viable embryos from injection of round spermatids into oocytes. N. Engl. J. Med., 1995: 333–525.

  28. 28.

    WEISS M., VIGIER M., HUE D.et al.: Pre- and postmeiotic expression of male germ cell-specific genes throughout 2-week cocultures of rat germinal and Sertoli cells. Biol. Reprod., 1997, 57: 68–76.

  29. 29.

    WOLGEMUTH D.J., WATRIN F.: List of cloned mouse genes with unique expression patterns during spermatogenesis. Mammalian Genome, 1991, 1: 283–288.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Mots clés

  • spelmatogenèse in vitro
  • méiose

Key words

  • Spermatogenesis
  • In vitro
  • Meiosis