Skip to main content

Advertisement

Ingénierie génétique et spermatogenèse

Genetic engineering and spermatogenesis

Article metrics

  • 103 Accesses

Resume

L’ingéniérie génétique permet une analyse fonctionnelle des gènes impliqués dans la spermatogenèse. Dans de nombreux cas, l’atteinte de la spermatogenèse a été fortuite, confirmant la grande sensibilité de cette fonction vis à vis des altérations génétiques. Les études ont déjà portées sur près de cent de ces gènes et ont permis entre autres: l’étude des facteurs impliqués dans la méiose, communs ou non aux deux sexes, et leurs rapports éventuels avec le cancer et l’apoptose; de faire un premier tri entre les facteurs qui peuvent être impliqués dans des stérilités et ceux qui peuvent être compensés par redondance génétique; la dissection de mécanismes de la spermiogenèse; l’analyse des processus impliqués dans la réponse au choc thermique et la barrière hémato-testiculaire. Les résultats s’étendent à d’autres niveaux de la biologie de la reproduction pour les deux sexes, et laissent apparaître des maladies pouvant être associées à une stérilité masculine. Les données montrent aussi l’importance des dissociations entre le génotype et le phénotype des spermatozoïdes et soulèvent la question de différences fonctionnelles interspécifiques de gènes homologues.

Abstract

The knowledge of mammal spermatogenesis takes great advantage of the powerful method of functional analysis by genetic engineering. This method allows to study the factors implicated in meiosis depending on the sex and their possible relationships with tumorigenesis and apoptosis. It can be distinguished the factors possibly involved in sterilities and those that can be compensated by genetic redundancy. The mechanisms of spermiogenesis can be dissected, as can be those of the heat shock response and the hemato-testicular barrier. Data extent to the biology of reproduction at various levels in both sexes and to the question of sterility-associated diseases. Knock-out mice also show the importance of the male germ cell genotype/phenotype dissociation in hemizygous. As an experimental approach, the method knows some limitations such as the differences between species in the function and expression of homologous genes. The unexpected failures of spermatogenesis found in many cases supports the notion that spermatogenesis is very sensitive to genetic damages and show that many genes have to be investigated.

References

  1. 1.

    BAKER S.M., BRONNER C.E., ZHANG L.et al.: Male defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell, 1995, 82: 309–319.

  2. 2.

    BOUCHARD M.J., DONG Y., McDERMOTT Jr B.M.et al.: Defects in nuclear and cytoskeletal morphology and mitochondrial localization in spermatozoa of mice lacking nectin-2, a component of cell-cell adherens junctions. Mol. Cell. Biol., 2000, 20: 2865–2873.

  3. 3.

    EDELMANN W., COHEN P.E., KANE M.et al.: Meiotic pachytene arrest inMlh1-deficient mice. Cell, 1996, 85: 1125–1134.

  4. 4.

    ESCALIER D.: Mammalian spermatogenesis investigated by genetic engineering. Histol. Histopathol., 1999, 14: 945–958.

  5. 5.

    ESCALIER D.: What are the germ cell phenotypes from infertile men telling us about spermatogenesis? Histol. Histopathol., 1999, 14: 959–971.

  6. 6.

    ESCALIER D.: Impact of genetic engineering on the spermatogenesis understanding (soumis pour publication).

  7. 7.

    GOW A., SOUTHWOOD C.M., Li J.S.et al.: CNS myelin and Sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell, 1999, 99: 649–659.

  8. 8.

    HOUSTON D.W., KING M.L.: A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development, 2000, 127: 447–456.

  9. 9.

    KRAUSZ C., QUINTANA-MURCI L., FELLOUS M.et al.: Absence of mutations involving the INSL3 gene in human idiopathic cryptorchidism., Mol. Hum. Reprod., 2000, 6: 298–302.

  10. 10.

    LAMB D.J.: Debate: Is ICSI a genetic time bomb? Yes. J. Androl., 1999, 20: 23–32.

  11. 11.

    LIN QC, SIROTKIN A., SKOULTCHI A.I.: Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol. Cell. Biol., 2000, 20: 2122–2128.

  12. 12.

    MENG X., LINDAHL M., HYVONEN M.E.et al.: Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science, 2000, 287: 1489–1493.

  13. 13.

    NAKAI A., SUZUKI M., TANABE M.: Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. Embo J., 2000, 19: 1545–1554.

  14. 14.

    OKABE M., IKAWA M., ASHKENAS J.: Male infertility and the genetics of spermatogenesis. Am. J. Hum. Genet., 1998, 62: 1274–1281.

  15. 15.

    OHTA M., MITOMI T., KIMURA M.et al.: Anomalies in transgenic mice carrying the human interleukin-2 gene. Tokai J. Exp. Clin. Med., 1990, 15: 307–315.

  16. 16.

    PACE A.J., LEE E., ATHIRAKUL K.et al.: Failure of spermatogenesis in mouse lines deficient in the Na+−K+−2Cl-cotransporter. J. Clin. Invest., 2000, 105: 441–450.

  17. 17.

    ROEST H.P., VAN KLAVEREN J., DE WIT J.et al.: Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell, 1996, 86, 86: 799–810.

  18. 18.

    THEPOT D., WEITZMAN J.B., BARRA J.et al.: Targeted disruption of the murinejun D gene results in multiple defects in male reproduction function. Development, 2000, 127: 143–153.

  19. 19.

    XU Y., ASHLEY T., BRAINERD E.E.et al.: Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects and thymic lymphoma. Genes Dev., 1996, 10: 2411–2422.

  20. 20.

    XU X., TOSELLI P.A., RUSSELL L.D.et al.: Globozoospermia in mice lacking the casein kinase II α′ catalytic subunit. Nat. Genet., 1999, 23: 118–121.

  21. 21.

    YU Y.E., ZHANG Y., UNNI E.et al.: Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1- deficient mice. Proc. Natl. Acad. Sci. USA. 2000, 97: 4683–4688.

  22. 22.

    YUAN L., LIU J.G., ZHAO J.et al.: The murineSCP3 gene is required for synaptonemal complex assembly, chromosome synapsis and male fertility. Mol. Cell., 2000, 5: 73–83.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Escalier, D. Ingénierie génétique et spermatogenèse. Androl. 10, 274–278 (2000) doi:10.1007/BF03034748

Download citation

Mots-clés

  • souris transgénique
  • inactivation génique
  • méiose
  • spermatogenèse
  • spermatozoïdes
  • testicule

Key words

  • knockout mice
  • meiosis
  • spermatogenesis
  • spermatozoa
  • testis