Skip to main content

Etablissement de l’empreinte parentale dans la lignée germinale. Conséquences pour la prise en charge en AMP

Imprinting in the germ line. Consequences for assisted reproduction


L’empreinte parentale est un marquage épigénétique des allèles parentaux et se manifeste par une expression monoallélique de certains gènes dits gènes soumis à empreinte. Le marquage épigénétique des allèles d’un gène soumis à l’empreinte diffère en fonction de l’origine parentale de l’allèle. Ces modifications épigénétiques parents-spécifiques sont nécessaires au développement normal de l’embryon. Elles surviennent dans la lignée germinale et sont transmises par les gamètes. Pour que l’empreinte soit établie selon le sexe de l’individu, le marquage gamétique-spécifique (épigénotype gamétique) doit être réversible et effaçable. L’effacement des modifications épigénétiques survient dans les cellules germinales primordiales (PGCs). Après cette étape d’effacement, une nouvelle empreinte parentale sexe-spécifique est établie dans les lignées germinales mâles et femmelles.

Aussi, parmi les nombreuses questions posées par l’utilisation de gamètes immatures lors de tentatives d’assistance médicale à la procréation (AMP), la question de l’utilisation de gamètes “épigénétiquement immatures” est primordiale. En particulier, les conséquences épigénétiques à long terme pour le fœtus de l’utilisation de gamètes épigénétiquement immatures ne sont pas connues.


Genomic imprinting is an epigenetic phenomenon in eutherian mammals that results in the differential expression of the paternally and maternally inherited alleles of a gene. Imprinted genes are necessary for normal mammalian development. Parental specific epigenetic modifications are imprinted on a subset of genes in the mammalian genome during germ cell maturation. Imprinting involves both cytosine methylation within CpG islands and changes in chromatin structure. All such epigenetic modifications are potentially reversible and can be erased. After the erasure step, new parental imprints are initiated, resulting in reintroduction of sex-specific imprints in the male and female germ line.

Although the function of genomic imprinting is not clear, it has been proposed that it evolved in mammals to regulate intrauterine growth and mammalian development. If the epigenotype of individual gametes is directly correlated with their later developmental capacities, genomic imprinting would have important practical implications in reproductive medicine for the use of embryos derived from assisted reproduction.


  1. 1.

    ADENOT, P. G., MERCIER, Y., RENARD, J. P., THOMPSON, E. M.: Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development, 1997, 124: 4615–4625.

    PubMed  CAS  Google Scholar 

  2. 2.

    AL-HASANI, S., LUDWIG, M., PALERMO, I., KUPKER, W., SANDMANN, J., JOHANNISSON, R., FORNARA, P., STURM, R., BALS-PRATSCH, M., BAUER, O., DIEDRICH, K.: Intracytoplasmic injection of round and elongated spermatids from azzospermic patients: results and review. Hum. Reprod., 1999, 14 (Suppl 1): 97–107.

    PubMed  Google Scholar 

  3. 3.

    ANTINORI, S., VERSACI, C., DANI, G., ANTINORI, M., POZZA, D., SELMAN, H. A.: Fertilization with human testicular spermatids: four successful pregnancies. Hum Reprod, 1997, 12: 286–91.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    AOKI, F., WORRAD, D. M., SCHULTZ, R. M.: Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol., 1997, 181: 296–307.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    ARAKI, Y., MOTOYAMA, M., YOSHIDA, A., KIM, S. Y., SUNG, H., ARAKI, S.: Intracytoplasmic injection with late spermatids: a successful procedure in achieving childbirth for couples in which the male partner suffers from azoospermia due to deficient spermatogenesis. Fertil. Steril., 1997, 67: 559–61.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    ARIEL, M., CEDAR, H., MCCARREY, J.: Developmental changes in methylation of spermatogenesis-specific genes include reprogramming in the epididymis. Nat. Genet., 1994, 7: 59–63.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    BALABAN, B., URMAN, B., ISIKLAR, A., ALATAS, C., AKSOY, S., MERCAN, R., NUHOGLU, A.: Progression to the blastocyst stage of embryos derived from testicular round spermatids. Hum. Reprod., 2000, 15: 1377–82.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    BAO, S., OBATA, Y., CARROLL, J., DOMEKI, I., KONO, T.: Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol. Reprod., 2000, 62: 616–21.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    BARLOW, D. P.: Gametic imprinting in mammals. Science, 1995, 270: 1610–3.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    BESTOR, T. H.: The DNA methyltransferases of mammals. Hum. Mol. Genet., 2000, 9: 2395–402.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    BIELINSKA, B., BLAYDES, S. M., BUTTING, K., YANG, T., KRAJEWSKA-WALASEK, M., HORSTHEMKE, B., BRANNAN, C. I.: De novo deletions ofSNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nat. Genet., 2000, 25: 74–78.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    BOURC’HIS, D., XU, G. L., LIN, C. S., BOLLMAN, B., BESTOR, T. H.: Dnmt3L and the Establishment of Maternal Genomic Imprints. Science, 2001, 22: 22.

    Google Scholar 

  13. 13.

    BRANDEIS, M., KAFRI, T., ARIEL, M., CHAILLET, J. R., MCCARREY, J., RAZIN, A., CEDAR, H.: The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. Embo. J., 1993, 12: 3669–3677.

    PubMed  CAS  Google Scholar 

  14. 14.

    BUITING, K., DITTRICH, B., GROSS, S., et al.: Sporadic imprinting defects in Prader-Willi syndrome and Angelman syndrome: implications for imprint-switch models, genetic counseling, and prenatal diagnosis. Am. J. Hum. Genet., 1998, 63: 170–80.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    CHOAVARATANA, R., SUPPINYOPONG, S., CHAIMAHAPHRUKSA, P.: ROSI from TESE the first case in Thailand: a case report. J. Med. Assoc. Thai., 1999, 82: 938–41.

    PubMed  CAS  Google Scholar 

  16. 16.

    DAVIS, T. L., TRASLER, J. M., MOSS, S. B., YANG, G. J., BARTOLOMEI, M. S.: Acquisition of theH19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics, 1999, 58: 18–28.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    DAVIS, T. L., YANG, G. J., MCCARREY, J. R., BARTOLOMEI, M. S.: The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet., 2000, 9: 2885–94.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    DEAN, W., BOWDEN, L., AITCHISON, A., KLOSE, J., MOORE, T., MENESES, J. J., REIK, W., FEIL, R.: Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development, 1998, 125: 2273–82.

    PubMed  CAS  Google Scholar 

  19. 19.

    DOERKSEN, T., TRASLER, J. M.: Developmental exposure of male germ cells to 5-azacytidine results in abnormal preimplantation development in rats. Biol. Reprod., 1996, 55: p1155–62.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    DORER, D. R., HENIKOFF, S.: Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell, 1994, 77: 993–1002.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    EL-MAARRI, O., BUITING, K., PEERY, E. G., KROISEL, P. M., BALABAN, B., WAGNER, K., URMAN, B., HEYD, J., LICH, C., BRANNAN, C. I., WALTER, J., HORSTHEMKE, B.: Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nat. Genet., 2001, 27: 341–4.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    ENGEMANN, S., STRODICKE, M., PAULSEN, M., FRANCK, O., REINHARDT, R., LANE, N., REIK, W., WALTER, J.: Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum. Mol. Genet., 2000, 9: 2691–706.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    FALLS, J. G., PULFORD, D. J., WYLIE, A. A., JIRTLE, R. L.: Genomic imprinting: implications for human disease. Am. J. Pathol., 1999, 154: 635–47.

    PubMed  CAS  Google Scholar 

  24. 24.

    FEIL, R., KHOSLA, S.: Genomic imprinting in mammals: an interplay between chromatin and DNA methylation? Trends Genet., 1999, 15: 431–5.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    FERGUSON-SMITH, A. C., SURANI, M. A.: Imprinting and the epigenetic asymmetry between parental genomes. Science, 2001, 293: 1086–1088.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    FISHEL, S., ASLAM, I., TESARIK, J.: Spermatid conception: a stage too early, or a time too soon? Hum. Reprod., 1996, 11: 1371–5.

    PubMed  CAS  Google Scholar 

  27. 27.

    FISHEL, S., GREEN, S., HUNTER, A., LISI, F., RINALDI, L., LISI, R., MCDERMOTT, H.: Human fertilization with round and elongated spermatids. Hum. Reprod., 1997, 12: 336–40.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    GHAZZAWI, I. M., ALHASANI, S., TAHER, M., SOUSO, S.: Reproductive capacity of round spermatids compared with mature spermatozoa in a population of azoospermic men. Hum. Reprod., 1999, 14: 736–40.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    HENERY, C. C., MIRANDA, M., WIEKOWSKI, M., WILMUT, I., DEPAMPHILIS, M. L.: Repression of gene expression at the beginning of mouse development. Dev. Biol., 1995, 169: 448–60.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    HOWLETT, S. K., REIK, W.: Methylation levels of maternal and paternal genomes during preimplantation development. Development, 1991, 113: 119–27.

    PubMed  CAS  Google Scholar 

  31. 31.

    JONES, P. L., VEENSTRA, G. L., WADE, P. A., VERMAAK, D., KASS, S. U., LANDSBERGER, N., STROUBOULIS, J., WOLFFE, A. P.: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet., 1998, 19: 187–191.

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    JURISICOVA, A., LOPES, S., MERIANO, J., OPPEDISANO, L., CASPER, R. F., VARMUZA, S.: DNA damage in round spermatids of mice with a targeted disruption of the Pp1cgamma gene and in testicular biopsies of patients with non-obstructive azoospermia. Mol. Hum. Reprod., 1999, 5: 323–30.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    KAFRI, T., GAO, X., RAZIN, A.: Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev, 1993, 6: 187–191.

    Google Scholar 

  34. 34.

    KAHRAMAN, S., POLAT, G., SAMLI, M., SOZEN, E., OZGUN, O. D., DIRICAN, K., OZBICER, T.: Multiple pregnancies obtained by testicular spermatid injection in combination with intracytoplasmic sperm injection. Hum. Reprod., 1998, 13: 104–10.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    KANEKO-ISHINO, T., KUROIWA, Y., MIYOSHI, N., KOHDA, T., SUZUKI, R., YOKOYAMA, M., VIVILLE, S., BARTON, S. C., ISHINO, F., SURANI, M. A.:Pegl/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat. Genet., 1995, 11: p52–9.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    KATO, Y., RIDEOUT, W. M., 3RD, HILTON, K., BARTON, S. C., TSUNODA, Y., SURANI, M. A.: Developmental potential of mouse primordial germ cells. Development, 1999, 126: 1823–32.

    PubMed  CAS  Google Scholar 

  37. 37.

    KERJEAN, A., DUPONT, J. M., VASSEUR, C., LE TESSIER, D., CUISSET, L., PALDI, A., JOUANNET, P., JEANPIERRE, M.: Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum. Mol. Genet., 2000, 9: 2183–7.

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    KERJEAN, A., JOUVENOT, Y., VALENZA-SCHAERLY, P., GUENATRI, M., JOUANNET, P., JEANPIERRE, M., PÀLDI, A.: Imprinting in the germ line. Ref. Gynecol. Obstet., 2001, 8: 1–6.

    Google Scholar 

  39. 39.

    KHOSLA, S., DEAN, W., BROWN, D., REIK, W., FEIL, R.: Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod., 2001, 64: 918–26.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    KHOSLA, S., DEAN, W., REIK, W., FEIL, R.: Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum. Reprod. Update, 2001, 7: 419–27.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    KIMURA, Y., TATENO, H., HANDEL, M. A., YANAGIMACHI, R.: Factors affecting meiotic and developmental competence of primary spermatocyte nuclei injected into mouse oocytes. Biol. Reprod., 1998, 59: 871–7.

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    KIMURA, Y., YANAGIMACHI, R.: Development of normal mice from oocytes injected with secondary spermatocyte nuclei. Biol. Reprod., 1995, 53: 855–62.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    KIMURA, Y., YANAGIMACHI, R.: Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development, 1995, 121: 2397–405.

    PubMed  CAS  Google Scholar 

  44. 44.

    LABOSKY, P. A., BARLOW, D. P., HOGAN, B. L.: Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development, 1994, 120: 3197–204.

    PubMed  CAS  Google Scholar 

  45. 45.

    LEFEBVRE, L., VIVILLE, S., BARTON, S. C., ISHINO, F., KEVERNE, E. B., SURANI, M. A.: Abnormal maternal behaviour and growth retardation associated with loss of the imprinted geneMest. Nat. Genet., 1998, 20: p163–9.

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    LEIGHTON, P. A., INGRAM, R. S., EGGENSCHWILER, J., EFSTRATIADIS, A., TILGHMAN, S. M.: Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature, 1995, 375: 34–9.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    LEVRAN, D., NAHUM, H., FARHI, J., WEISSMAN, A.: Poor outcome with round spermatid injection in azoospermic patients with maturation arrest. Fertil. Steril., 2000, 74: 443–9.

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    MANN, M. R., BARTOLOMEI, M. S.: Maintaining imprinting. Nat Genet, 2000, 25: 4–5.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    MCCAULEY, E., ITO, J., KAY, T.: Psychosocial functioning in girls with Turner’s syndrome and short stature: social skills, behavior problems, and self-concept. J. Am. Acad. Child Psychiatry, 1986, 25: 105–12.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    MCCAULEY, E., KAY, T., ITO, J., TREDER, R.: The Turner syndrome: cognitive deficits, affective discrimination, and behavior problems. Child. Dev., 1987, 58: 464–73.

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    MCGRATH, J., SOLTER, D.: Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984, 37: 179–183.

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    MERTINEIT, C., YODER, J. A., TAKETO, T., LAIRD, D. W., TRASLER, J. M., BESTOR, T. H.: Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development, 1998, 125: 889–97.

    PubMed  CAS  Google Scholar 

  53. 53.

    MILLER, A. P., WILLARD, H. F.: Chromosomal basis of X chromosome inactivation: identification of a multigene domain in Xp11.21-p11.22 that escapes X inactivation. Proc. Natl. Acad. Sci. USA, 1998, 95: 8709–14.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    MONK, M., BOUBELIK, M., LEHNERT, S.: Temporal and regional changes in DNA methylation in the embryonix, extraembryonic and germ cell lineages during mouse embryo development. Development, 1987, 99: 371–382.

    PubMed  CAS  Google Scholar 

  55. 55.

    MOORE, T., REIK, W.: Genetic conflict in early development: parental imprinting in normal and abnormal growth. Rev. Reprod., 1996, 1: 73–7.

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    NAGY, A., ROSSANT, J., NAGY, R., ABRAMOW-NEWERLY, W., RODER, J. C.: Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA, 1993, 90: 8424–8.

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    NEUMANN, B., KUBICKA, P., BARLOW, D. P.: Characteristics of imprinted genes. Nat. Genet., 1995, 9: 12–3.

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    OBATA, Y., KANEKO, I. T., KOIDE, T., TAKAI, Y., UEDA, T., DOMEKI, I., SHIROISHI, T., ISHINO, F., KONO, T.: Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development, 1998, 125: 1553–60.

    PubMed  CAS  Google Scholar 

  59. 59.

    OGURA, A., MATSUDA, J., YANAGIMACHI, R.: Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc. Natl. Acad. Sci. USA, 1994, 91: 7460–2.

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    OGURA, A., YANAGIMACHI, R.: Round spermatid nuclei injected into hamster oocytes from pronuclei and participate in syngamy. Biol Reprod, 1993, 48: 219–25.

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    OGURA A., YANAGIMACHI, R.: Spermatids as male gametes. Reprod Fertil Dev, 1995, 7: 155–8.

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    OGURA, A., YANAGIMACHI, R., USUI, N.: Behaviour of hamster and mouse round spermatid nuclei incorporated into mature oocytes by electrofusion. Zygote, 1993, 1: 1–8.

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    OKANO, M., BELL, D. W., HABER, D. A., LI, E.: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99: 247–257.

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    PALDI, A., JOUVENOT, Y.: Allelic trans-sensing and imprinting. Results Probl. Cell Differ., 1999, 25: 271–82.

    PubMed  CAS  Google Scholar 

  65. 65.

    PINYOPUMMINTR, T., BAVISTER, B. D.: In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically defined, protein-free culture media. Biol. Reprod., 1991, 45: 736–42.

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    PRAPAS, Y., CHATZIPARASIDOU, A., VANDERZWALMEN, P., NIJS, M., PRAPAS, N., LEJEUNE, B., VLASSIS, G., SCHOYSMAN, R.: Spermatid injection: reconsidering spermatid injection. Hum. Reprod., 1999, 14: 2186–8.

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    RAZIN, A., SHEMER, R.: DNA methylation in early development. Hum Mol Genet, 1995, 4: 1751–5.

    PubMed  CAS  Google Scholar 

  68. 68.

    REIK, W., BROWN, K. W., SCHNEID, H., LE BOUC, Y., BICKMORE, W., MAHER, E. R.: Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet, 1995, 4: 2379–85.

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    REIK, W., DEAN, W., WALTER, J.: Epigenetic reprogramming in mammalian development. Science, 2001, 293: 1089–1092.

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    REIK, W., WALTER, J.: Genomic imprinting: parental influence on the genome. Nature Genet. Reviews, 2001, 2: 21–32.

    CAS  Article  Google Scholar 

  71. 71.

    REIK, W., WALTER, J.: Imprinting mechanisms in mammals. Curr. Opin. Genet. Dev., 1998, 8: 154–164.

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    SASAGAWA, I., ICHIYANAGI, O., YAZAWA, H., NAKADA, T., SAITO, H., HIROI, M., YANAGIMACHI, R.: Round spermatid transfer and embryo development. Arch. Androl., 1998, 41: 151–7.

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    SASAGAWA, I., KURETAKE, S., EPPIG, J. J., YANAGIMACHI, R.: Mouse primary spermatocytes can complete two meiotic divisions within the oocyte cytoplasm. Biol. Reprod., 1998, 58: 248–54.

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    SCHOYSMAN, R., VANDERZWALMEN, P., BERTIN, G., NIJS, M., VAN DAMME, B.: Oocyte insemination with spermatozoa precursors. Curr. Opin. Urol., 1999, 9: 541–5.

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    SHAMANSKI, F. L., KIMURA, Y., LAVOIR, M. C., PEDERSEN, R. A., YANAGIMACHI, R.: Status of genomic imprinting in mouse spermatids. Hum. Reprod., 1999, 14: 1050–1056.

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    SIMON, I., TENZEN, T., REUBINOFF, B. E., HILLMAN, D., MCCARREY, J. R., CEDAR, H.: Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature, 1999, 401: 929–932.

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    SKUSE, D. H., JAMES, R. S., BISHOP, D. V., et al: Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature, 1997, 387: 705–708.

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    SPOTILA, L. D., SEREDA, L., PROCKOP, D. J.: Partial isodisomy for maternal chromosome 7 and short stature in an individual with a mutation at the COL1A2 locus. Am. J. Hum. Genet., 1992, 51: 1396–405.

    PubMed  CAS  Google Scholar 

  79. 79.

    SQUIRE, J., WEKSBERG, R.: Genomic imprinting in tumours. Semin. Cancer Biol., 1996, 7: 41–7.

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    STEGER, K.: Transcriptional and translational regulation of gene expression in haploid spermatids. Anat. Embryol., 1999, 199: 471–87.

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    SURANI, M. A.: Imprinting and the initiation of gene silencing in the germ line. Cell, 1998, 93: 309–12.

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    TADA, M., TADA, T., LEFEBVRE L., BARTON, S. C., SURANI, M. A.: Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. Embo J, 1997, 16: 6510–20.

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    TADA, T., OBATA, Y., TADA, M., GOTO, Y., NAKATSUJI, N., TAN, S., KONO, T., TAKAGI, N.: Imprint switching for nonrandom X-chromosome inactivation during mouse oocyte growth. Development, 2000, 127: 3101–5.

    PubMed  CAS  Google Scholar 

  84. 84.

    TANAKA, M., HENNEBOLD, J. D., MACFARLANE, J., ADASHI, E. Y.: A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development, 2001, 128: 655–64.

    PubMed  CAS  Google Scholar 

  85. 85.

    TESARIK, J.: Fertilization of oocytes by injecting spermatozoa, spermatids and spermatocytes. Rev. Reprod., 1996, 1: 149–52.

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    TESARIK, J.: Oocyte activation after intracytoplasmic injection of mature and immature sperm cells. Hum. Reprod., 1998, 1: 117–27.

    Google Scholar 

  87. 87.

    TESARIK, J., GRECO, E., COHEN-BACRIE, P., MENDOZA, C.: Germ cell apoptosis in men with complete and incomplete spermiogenesis failure. Mol. Hum. Reprod., 1998, 4: 757–62.

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    TESARIK, J., MENDOZA, C.: Spermatid injection into human oocytes. I. Laboratory techniques and special features of zygote development. Hum. Reprod., 1996, 11: 772–9.

    PubMed  CAS  Google Scholar 

  89. 89.

    TESARIK, J., MENDOZA, C., TESTART, J.: Viable embryos from injection of round spermatids into oocytes. N. Engl. J. Med., 1995, 333: 525.

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    TESARIK, J., ROLET, F., BRAMI, C., SEDBON, E., THOREL, J., TIBI, C., THEBAULT, A.: Spermatid injection into human oocytes. II. Clinical application in the treatment of infertility due to non-obstructive azoospermia. Hum Reprod, 1996, 11: 780–3.

    PubMed  CAS  Google Scholar 

  91. 91.

    TILGHMAN, S. M.: The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell, 1999, 96: 185–193.

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    TUCKER, K. L., BEARD, C., DAUSMAN, J., JACKSON-GRUSBY, L., LAIRD, P. W., LEI, H., LI, E., JAENISCH, R.: Germ line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev., 1996, 10: 1008–1020.

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    TYCKO, B., TRASLER, J., BESTOR, T.: Genomic imprinting: gametic mechanisms and somatic consequences. J. Androl., 1997, 18: 480–6.

    PubMed  CAS  Google Scholar 

  94. 94.

    UEDA, T., ABE, K., MIURA, A., et al: The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells, 2000, 5: 649–59.

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    VAN LANGENDONCKT, A., DONNAY, L., SCHUURBIERS, N., AUQUIER, P., CAROLAN, C., MASSIP, A., DESSY, F.: Effects of supplementation with fetal calf serum on development of bovine embryos in synthetic oviduct fluid medium. J. Reprod. Fertil., 1997, 109: 87–93.

    PubMed  Article  Google Scholar 

  96. 96.

    VANDERZWALMEN, P., NIJS, M., STECHER, A., ZECH, H., BERTIN, G., LEJEUNE, B., VANDAMME, B., CHATZIPARASIDOU, A., PRAPAS, Y., SCHOYSMAN, R.: Is there a future for spermatid injections?. Hum. Reprod., 1998, 4: 71–84.

    Article  Google Scholar 

  97. 97.

    VANDERZWALMEN, P., ZECH, H., BIRKENFELD, A., YEMINI, M., BERTIN, G., LEJEUNE, B., NIJS, M., SEGAL, L., STECHER, A., VANDAMME, B., VAN ROOSENDAAL, E., SCHOYSMAN, R.: Intracytoplasmic injection of spermatids retrieved from testicular tissue: influence of testicular pathology, type of selected spermatids and oocyte activation. Hum. Reprod., 1997, 12: 1203–13.

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    WIEKOWSKI, M., MIRANDA, M., DEPAMPHILIS, M. L.: Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev. Biol., 1993, 159: 366–78.

    PubMed  Article  Google Scholar 

  99. 99.

    WOLFFE, A. P.: Transcriptional control: imprinting insulation. Curr. Biol., 2000, 10: R463–5.

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    YANAGIDA, K., YAZAWA, H., KATAYOSE, H., KIMURA, Y., HAYASHI, S., SATO, A.: Oocyte activation induced by spermatids and the spermatozoa. Int. J. Androl., 2000, 23: 63–5.

    PubMed  Article  Google Scholar 

  101. 101.

    YANG, T., ADAMSON, T. E., RESNICK, J. L., LEFF, S., WEVRICK, R., FRANCKE, U., JENKINS, N. A., COPELAND, N. G., BRANNAN, C. I.: A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nat. Genet., 1998, 19: 25–31.

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    YAZAWA, H., YANAGIDA, K., KATAYOSE, H., HAYASHI, S., SATO, A.: Comparison of oocyte activation and Ca2+ oscillation-inducing abilities of round/elongated spermatids of mouse, hamster, rat, rabbit and human assessed by mouse oocyte activation assay. Hum. Reprod., 2000, 15: 2582–90.

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    YODER, J. A., SOMAN, N. S., VERDINE, G. L., BESTOR, T. H.: DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J. Mol. Biol., 1997, 270: 385–395.

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    YOUNG, L. E., FAIRBURN, H. R.: Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology, 2000, 53: 627–48.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Kerjean.

Additional information

Communication au XVIIIo Congrès de la Société d’Andrologie de Langue Française, Montpellier, 13–15 décembre 2001. Les termes marqués par un *sont expliqués dans le Glossaire en fin d’article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kerjean, A., Jeanpierre, M., Jouannet, P. et al. Etablissement de l’empreinte parentale dans la lignée germinale. Conséquences pour la prise en charge en AMP. Androl. 11, 209–220 (2001).

Download citation

Mots clés

  • Empreinte parentale
  • gamétogenèse
  • AMP


  • imprinting
  • gametogenesis
  • assisted reproduction