Skip to main content
  • Traitement Anticancereux, Fonction de Reproduction et Sexualtite
  • Published:

Effets de la radiothérapie sur la fonction testiculaire de l'adulte

Effects of radiotherapy on adult testicular function

Resume

En radiothérapie, les faibles doses provenant du rayonnement diffusé sont suffisantes pour léser les organes très radio-sensibles situés à proximité du volume traité tels que les testicules. Les études réalisées en dose unique sur des volontaires ont montré que des doses inférieures à 10 cGy n'entraînent aucune lésion détectable par spermogramme ou biopsie testiculaire. Une oligospermie sévère s'installe à partir de 15 cGy et 90% des patients sont azoospermiques après 100 cGy. En règle, les irradiations thérapeutiques ne sont pas délivrées en dose unique mais selon un protocole fractionné afin d'obtenir un effet différentiel entre tissue sain et tissu tumoral. A dose égale, ces irradiations fractionnées sont à l'origines de lésion germinales testiculaires plus importantes et plus durables que les irradiations en dose unique. Ainsi des doses fractionnées supérieures à 50 cGy entraînent une azoospermie dans 100% des cas. Cette azoospermie n'est que transitoire jusqu' à 200 cGy, la récupération pouvant cependant être incomplète et ne survenir que plusieurs années après l'irradiation. Au-delà de 200 cGy, il existe un risque d'azoospermie définitive. Les spermatogonies sont les cellules les plus radio-sensibles de la lignée. Leur atteinte conditionne l'effet de la radiothérapie sur la fertilité. En pratique courante, l'hypogonadisme clinique est exceptionnel, ce qui prouve la relative radio-résistance des celules de Leydig. Cependant, les études fonctionnelles montrent que les taux sériques de LH s'élèvent lorsque la dose testiculaire augmente, les taux de testostérone restant initialement dans les limites de la normale.

Abstract

Radiation therapy plays a major role in the curative management of numerous neoplasms, such as Hodgkin's disease or testicular cancer. However, the adverse effects of low-dose radiation scattered to radiosensitive normal tissues adjacent to the radiation fields, such as the testes, have been recognized. Experimental studies performed on healthy volunteers showed that no lesion was detectable on sperm counts or testicular biopsies after single doses of less than 10 cGy. Oligospermia has been reported after 15 cGy and 100 cGy result in a 90% incidence of azoospermia. In the radiotherapy of cancer, fractionated regimens are used to increase the differential effect between normal and tumoral tissues. For the same dose, a fractionated radiation regimen results in a higher incidence and a longer period of azoospermia than a single dose irradiation. Fractionated doses of >50 cGy result in a 100% incidence of azoospermia. For doses up to 200 cGy, recovery occurs but normal sperm production remains uncertain. Although the recovery time can be very long (more than 10 years), there is a risk of definitive azoospermia after doses of >200 cGy. Spermatogonia are the most radio-sensitive cell type and their depletion after small irradiation doses explain the effect of radiotherapy on fertility. Clinical hypogonadism is very unfrequent in usual practice, what seems to prove a relative radio-resistance of the Leydig cells. However, functionals studies show that there is a rise in serum LH with increasing dose to the testes. A decrease in testosterone levels has been reported after high testicular doses.

References

  1. Aass N., Fossa S.D., Theodorsen L., Norman N.: Prediction of long-term gonadal toxicity after standard treatment for testicular cancer. Eur. J. Cancer 1991, 27:1087–1091.

    PubMed  CAS  Google Scholar 

  2. Amelar R.D., Dubin L., Hotchkiss R.S.: Restoration of fertility following unilateral orchiectomy and radiation therapy for testicular tumors. J. Urol. 1971, 106:714–718.

    PubMed  CAS  Google Scholar 

  3. Ash P.: The influence of radiation on fertility in man. Br. J. Radiol. 1980, 53: 271–278.

    PubMed  CAS  Google Scholar 

  4. Berthelsen J.G.: Sperm counts and serum folliclestimulating hormone levels before and after radiotherapy and chemotherapy in men with testicular germ cell cancer. Fertil. Steril. 1984, 41: 281–286.

    PubMed  CAS  Google Scholar 

  5. Blatt J., Sherins R. J., Niebrugge D., Bleyer W.A., Poplack D.G.: Leydig cell function in boys following treatment for testicular relapse of acute lymphoblastic leukemia. J. Clin. Oncol. 1985, 3: 1227–1231.

    PubMed  CAS  Google Scholar 

  6. Brauner R., Czernichow P., Cramer P., Schaison G., Rappaport R.: Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia. N. Engl. J. Med. 1983, 309: 25–28.

    PubMed  CAS  Google Scholar 

  7. Carrascoa A., Audi L., Ortega J.J., Javier G., Toran N.: Hypothalamo-hypophyseal-testicular function in prepubertal boys with acute lymphoblastic leukemia following chemotherapy and testicular radiotherapy. Acta Paediatr. Scand. 1984, 73: 364–371.

    Article  Google Scholar 

  8. Frass B.A., Kinsella T.J., Harrington F.S., Glatstein E.: Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield. Int. J. Radiat. Oncol. Biol. Phys. 1985, 11: 609–615.

    Google Scholar 

  9. Grigsby P.W., Perez C.A.: The effects of external beam radiotherapy on endocrine function in patients with carcinoma of the prostate. J. Urol. 1986, 135:726–727.

    PubMed  CAS  Google Scholar 

  10. Hahn E.W., Feingold S.M., Simpson I., Batata M.: Recovery from aspermia induced by low-dose radiation in seminoma patients. Cancer 1982, 50: 337–340.

    Article  PubMed  CAS  Google Scholar 

  11. Hansen P.V., Trykker H., Svennekjaer I.L., Hvolby J.: Long-term recovery of spermatogenesis after radiotherapy in patients with testicular cancer. Radiother. Oncol. 1990, 18: 117–125.

    Article  PubMed  CAS  Google Scholar 

  12. Izard M.A.: Leydig cell function and radiation: a review of the literature. Radiother. Oncol. 1995, 34: 1–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kinsella T.J., Trivette G., Rowland J. et al.: Long-term follow-up of testicular function following radiation therapy for early-stage Hodgkin's disease. J. Clin. Oncol. 1989, 7: 718–724.

    PubMed  CAS  Google Scholar 

  14. Meistrich M.L., Van Beek M.E.: Radiation sensitivity of the human testis. Advances Radiat. Biol. 1990, 14: 227–268.

    Google Scholar 

  15. Nader S., Schultz P.N., Cundiff J.H., Hussey D.H., Samaan N.A.: profiles of patients with testicular tumors treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1983, 9: 1723–1726.

    PubMed  CAS  Google Scholar 

  16. Redman J.R., Bajorunas D.R., Goldstein D.P. et al.: Semen cryopreservation and artificial insemination for Hodgkin's disease. J. Clin. Oncol. 1987, 5: 233–238.

    PubMed  CAS  Google Scholar 

  17. Regaud C., Nogier T.: Stérilisation reontgénienne, totale et définitive, sans radiodermite, des testicules du bélier adulte. Conditions de sa résalisation. C. R. Soc. Biol. 1911, 70: 202–203.

    Google Scholar 

  18. Rowley M.J., Leach D.R., Warner G.A., Heller C.G.: Effects of graded doses of ionizing radiation on the human testis. Radiat. Res. 1974, 59: 665–678.

    Article  PubMed  CAS  Google Scholar 

  19. Sandeman T.F.: The effect of X-irradiation on male human fertility. Br. J. Radiol. 1966, 39: 901–907.

    Article  PubMed  CAS  Google Scholar 

  20. Schilsky R.L.: Infertility in patients with testicular cancer: testis, tumor or treatment?. J. Natl. Cancer Inst. 1989, 81: 1204–1205.

    Article  PubMed  CAS  Google Scholar 

  21. Schlappack O.K., Kratzik C., Schmidt W., Spona J., Schuster E.: Response of the seminiferous epithelium to scattered radiation in seminoma patients. Cancer 1988, 62: 1487–1491.

    Article  PubMed  CAS  Google Scholar 

  22. Seal U.S.: FSH et LH elevation after radiation for treatment of cancer of the prostate. Invest. Urol. 1979, 16: 278–280.

    PubMed  CAS  Google Scholar 

  23. Shalet S.M., Tsatsoulis A., Whitehead E., Read G.: Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J. Endocrinol. 1989, 120: 161–165.

    Article  PubMed  CAS  Google Scholar 

  24. Shapiro E., Kinsella T.J., Makuch R.W., Fraass B.A., Glatstein E., Rosenberg S.A., Sherins R.J.: Effects of fractionated irradiation on endocrine aspects of testicular function. J. Clin. Oncol. 1985, 3: 1232–1239.

    PubMed  CAS  Google Scholar 

  25. Sklar C.A., Robison L.A., Nesbit M.E., Sather H.N., Meadows A.T., Ortega J.A., Kim, T.H., Hammond G.D.: Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Childrens Cancer Study Group. J. Clin. Oncol. 1990, 8: 1981–1987.

    PubMed  CAS  Google Scholar 

  26. Tomic R., Bergman J.E., Damber B., Littbrand B., Lofroth P.O.: Effects of external radiation therapy for cancer of the prostate on the serum concentrations of testosterone, follicle-stimulating hormone, luteinizing hormone and prolactin. J. Urol. 1993, 130: 287–289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachaud, J.M., Alzieu, C. & Bujan, L. Effets de la radiothérapie sur la fonction testiculaire de l'adulte. Androl. 5, 476–485 (1995). https://doi.org/10.1007/BF03034531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034531

Mots clés

Keywords