Skip to main content

Rôle des facteurs de croissance et cytokines dans le testicule normal et pathologique

Growth factors and cytokines in the physiology and pathology of male gonade

An Erratum to this article was published on 01 June 1997

Resume

L'étude de la stérilité masculine a trouvé depuis 4 ans un regain d'intérêt avec l'avènement d'une nouvelle technique pour le traitement de l'infertilité masculine, l'injection intracytoplasmique d'un spermatozoïde dans l'ovocyte (ICSI). Néanmoins, l'étude des caractéristiques du sperme demeure le maître examen dans l'évaluation de la fertilité masculine. Il constitue le reflet de l'activité testiculaire et des événements post-gonadiques, en particulier, la maturation épididymaire. Ces processus sont pour la plupart, non seulement sous le contrôle du système neuroendocrinien, mais aussi, sous le contrôle de facteurs locaux tels que les facteurs de croissance et les cytokines. Dans cette revue, nous présentons, dans une première partie, les données montrant le rôle crucial que jouent les facteurs locaux sur la formation du testicule fœtal mais aussi sur les fonctions différenciées de la gonade comme la stéroïdogenèse et la spermatogenèse. Dans une seconde partie, nous présentons les données obtenues dans le cadre de l'exploration de l'homme infertile, ainsi que les effetsin vitro des facteurs locaux sur le pouvoir fécondant des spermatozoïdes. Ces dernières données sont encore fragmentaires et l'utilisation des facteurs de croissance et des cytokines dans le domaine des stérilités dites idiopathiques n'en est qu'à ses débuts. Enfin, dans le cadre d'une démarche prospective, nous indiquons quelques voies de recherche qui nous semblent intéressantes concernant l'étude des facteurs de croissance et des cytokines dans les stérilité masculines.

Abstract

Since 4 years ago, intracytoplasmique sperm injection (ICSI) represents a new therapeutic approach of different forms of male sterility including obstructives and spermatogenic failure azzospermia. However, the evaluation of the male infertility begins with the study of semen characteristics particularly sperm count and motility assessment. However, testicular activites are not only under the control of the neuroendocrine system but also under that of local growth factors and cytokines.

In this review, we report, in the first part, the different observations indicating the key role of growth factors and cytokines in the fetal testis development as well as in the differentiated functions, steroidogenesis and gametogenesis. In a second part, we report the data, obtained by different teams, related to the evaluation and/or actions of these factors in infertile men. Moreover, the low number of data related to the use of these factors in order to improve sperm fuction are mentioned. Finally, in a prospective context, we indicate some points which seem of interest for elucidating some aspects of growth factor and cytokine role in fertility/infertility.

References

  1. Ailenberg M., Tung P.S., Fritz I.B.: Transforming growth factor-beta elicits shape changes and increases contractility of testicular peritubular cells. Biol. Reprod., 1990, 42: 499–509.

    PubMed  Article  CAS  Google Scholar 

  2. Benahmed M., Morera A.M., Chauvin M.A., de Peretti E.: Somatomedin C/insulin-like growth factor 1 as a possible intratesticular regulator of Leydig cell activity. Mol. Cell Endocrinol., 1987, 50: 69–77.

    PubMed  Article  CAS  Google Scholar 

  3. Benahmed M., Sordoillet C., Chauvin M.A., De Peretti E., Morera A.M.: On the mechanisms involved in the inhibitory and stimulating actions of Transforming Growth Factor b on porcine testicular steroidogenesis: an in vitro study. Mol. Cell Endocrinol., 1989, 67: 155–164.

    PubMed  Article  CAS  Google Scholar 

  4. Benahmed M.: Growth factors and cytokines in the testis. In: F. Comhaire. Male infertility: Clinical investigation, cause, evaluation and treatment. London, Chapman Hale, 1996: pp 55–96

    Google Scholar 

  5. Berta P., Hawkins J.R., Sinclair A.H., et al.: Genetic evidence equating SRY and the testis determining factor. Nature, 1990, 348: 448–450.

    PubMed  Article  CAS  Google Scholar 

  6. Brannan C.I., Lyman S.D., Williams D.E., et al.: Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc. Natl. Acad. Sci. U. S. A., 1991, 88: 4671–4674.

    PubMed  Article  CAS  Google Scholar 

  7. Calkins J.H., Sigel M.M., Nankin H.R., Lin T.: Interleukin-1 inhibits Leydig cell steroidogenesis in primary culture. Endocrinology, 1988, 123: 1605–1610.

    PubMed  CAS  Google Scholar 

  8. Calkins J.H., Guo H., Sigel M.M., Lin T.: Tumor necrosis factor-a enhances inhibitory effects of interleukin-1b on Leydig cell steroidogenesis. Biochem Biophys Res Commun, 1990, 166: 1313–1318.

    PubMed  Article  CAS  Google Scholar 

  9. Comhaire F., Bosmans E., Ombelet W., Punjabi U., Schoonjans F.: Cytokines in semen of normal men and of patients with andrological diseases. Am. J. Reprod. Immunol., 1994, 31: 99–103.

    PubMed  CAS  Google Scholar 

  10. D'Cruz O.J., Haas JrG.G.: Immunoreactive human epidermal growth factor in human seminal plasma. J. Clin. Endocrinol. Metab., 1989, 68: 1136–1140.

    PubMed  Google Scholar 

  11. Depuydt C.E., Bosmans E., Zalata A., Schoonjans F., Comhaire F.H.: The relation between reactive oxygen species and cytokines in andrological patients with or with out male accessory gland infection. J. Androl., 1996, 17: 699–707.

    PubMed  CAS  Google Scholar 

  12. Eisermann J., Register K.B., Strickler R.C., Collin J.L.: The effect of tumor necrosis factor on human sperm motilityin vitro. J. Androl., 1989, 10: 270–274.

    PubMed  CAS  Google Scholar 

  13. Elson S.D., Browne C.A., Thorburn G.D.: Identification of epidermal growth factor-like activity in human male reproductive tissues and fluids. J. Clin. Endocrinol. Metab., 1984, 58: 589–594.

    PubMed  CAS  Google Scholar 

  14. Fauser B.C., Baird A., Hsueh A.J.: Fibroblast growth factor inhibits luteinizing hormone-stimulated androgen production by cultured rat testicular cells. Endocrinology, 1988, 123: 2935–2941.

    PubMed  CAS  Google Scholar 

  15. Flanagan J.G., Chan D., Leder P.: Transmembrane form of the c-kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutation. Cell, 1991, 64: 1025–1035.

    PubMed  Article  CAS  Google Scholar 

  16. Franchimont P., Croze F., Demoulin A., Bologne R., Hustin J.: Effect of inhibin in rat testicular deoxyribonucleic acid (DNA) synthesis in vitro. Acta Endocrinol. Copenh., 1981, 98: 312–320.

    PubMed  CAS  Google Scholar 

  17. Fritz I.B.: Sites of action of androgens and follicle stimulating hormones on cells of the seminiferous tubule. In: G. Litwack. Biochemical Actions of Hormones, New York, Academic Press, 1978: 249–281.

    Google Scholar 

  18. Godin I., Wylie C.C.: TGFß1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development, 1991, 113: 1451–1457.

    PubMed  CAS  Google Scholar 

  19. Godin I., Deed R., Cooke J., Zsebo K., Dexter M., Wylie C.C.: Effects of the steel gene product on mouse primordial germ cells in culture. Nature, 1991, 352: 807–809.

    PubMed  Article  CAS  Google Scholar 

  20. Gonzales A.-M., Buscaglia M., Ong M., Baird A.: Distribution of basic fibroblast growth factor in 18-day-old rat fetus: localization in basement membranes of diverses tissues. J. Cell Biol., 1990, 110: 753–765.

    Article  Google Scholar 

  21. Gruschwitz M.S., Brezinschek R., Brezinschek H.-P.: Cytokine levels in the seminal plasma of infertile males. J. Androl., 1996, 17: 158–163.

    PubMed  CAS  Google Scholar 

  22. Hakovirta H., Syed V., Jegou B., Parvinen M.: Function of interleukin-6 as a inhibitor of meiotic DNA synthesis in the rat seminiferous epithelium. Mol. Cell Endocrinol., 1995, 108: 193–198.

    PubMed  Article  CAS  Google Scholar 

  23. Haneji T., Koide S.S., Tajima Y., Nishimune Y.: Differential effects of epidermal growth factor on the differentiation of type A spermatogonia in adult mouse cryptorchid testes in vitro. J. Androl., 1991, 12: 383–388.

    Google Scholar 

  24. Haney A.F., Hughes S.F., Weinberg J.B.: The lack of effect of tumor necrosis factor-alpha, interleukin-1-alpha, and interferon-gamma on human sperm motility in vitro. J. Androl., 1992, 13: 249–253.

    PubMed  CAS  Google Scholar 

  25. Hsueh A.J.W., Dahl K.D., Vaughan J., et al.: Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc. Natl. Acad. Sci. U. S. A., 1987, 84: 5082–5086.

    PubMed  Article  CAS  Google Scholar 

  26. Huleihel M., Lunenfeld E., Ayelet L., Postashnik G., Glezerman M.: Cytokine expression in seminal plasma of fertile and infertile males. 11th Annual Meeting of the European Society of Human Reproduction and Embryology. Hamburg, 1995.

  27. Huleihel M., Lunenfeld E., Ayelet L., Potashnik G., Glezerman M.: Distinct expression levels of cytokines and soluble cytokine receptors in seminal plasma of fertile and infertile men. Fertil. Steril., 1996, 66: 135–139.

    PubMed  CAS  Google Scholar 

  28. James K., Hargreave T.B.: Immunosuppression by seminal plasma and possible clinical signifianca. Immunol. Today, 1984, 5: 357–363.

    Article  Google Scholar 

  29. Kaipia A., Toppari J., Huhtaniemi I., Paranko J.: Sex difference in the action of activin-A on cell proliferation of differentiating rat gonad. Endocrinology, 1994, 134: 2165–2170.

    PubMed  Article  CAS  Google Scholar 

  30. Khan S.A., Nieschlag E.: Interleukin-1 inhibits follitropin-induced aromatase activity in immature rat Sertoli cells in vitro. Mol. Cell Endocrinol., 1991, 75: 1–7.

    PubMed  Article  CAS  Google Scholar 

  31. Kiersenbaum A.L.: Mammalian spermatogenesisin vivo andin vitro: a partnership of spermatogenic and somatic cell lineages. Endocr. Rev., 1994, 15: 116–134.

    Google Scholar 

  32. Lee K.-O., Oh Y., Giudice L.C., Cohen P., Peehl D.M., Rosenfeld E.G.: Identification of insulinlike growth factor-binding protein-3 (IGFBP-3) fragments and IGFBP-5 proteolytic activity in human seminal plasma: a comparison of normal and vasectomized patients. J. Clin. Endocrinol. Metab., 1994, 79: 1367–1372.

    PubMed  Article  CAS  Google Scholar 

  33. Lin T., Haskell J., Vinson N., Terracio L.: Direct stimulatory effects of insulin-like growth factor I on Leydig cell steroidogenesis in primary culture. Biochem. Biophys. Res. Commun., 1986, 137: 950–956.

    PubMed  Article  CAS  Google Scholar 

  34. Lin T., Blaisdell J., Haskell J.F.: Transforming growth factor-b inhibits Leydig cell steroidogenesis. Biochem. Biophys. Res. Commun., 1987, 146: 387–394.

    PubMed  Article  CAS  Google Scholar 

  35. Lin T., Calkins H., Morris P.L., Vale W.W., Bardin C.W.: Regulation of Leydig cell function in primary culture by inhibin and activin. Endocrinology, 1989, 125: 2134–2140.

    PubMed  CAS  Google Scholar 

  36. Mallea L.E., Machado A.J., Navaroli F., Rommerts F.F.G.: Epidermal growth factor stimulates lactate production and inhibits aromatization in cultured Sertoli cells from immature rats. J. Androl., 1986, 9: 201–208.

    Article  CAS  Google Scholar 

  37. Mather J.P., Attie K., Rice G., Phillips D.: Activin stimulates spermatogonial proliferation in Sertoli-germ cell co-cultures from immature rat testis. Endocrinology, 1990, 127: 3206–3214.

    PubMed  CAS  Google Scholar 

  38. Matsui Y., Toksoz D., Nishikawa S., et al.: The effect of steel factor, the ligand for c-kit and LIF/DIA on murine primordial germ cells in culture. Nature, 1991, 353: 750–752.

    PubMed  Article  CAS  Google Scholar 

  39. Mauduit C., Chauvin M.A., de Perretti E., Morera A.M., Benahmed M.: Effect of activin A on dehydroepiandrosterone and testosterone secretion by primary immature porcine Leydig cells. Biol. Reprod., 1991, 45: 101–109.

    PubMed  Article  CAS  Google Scholar 

  40. Mauduit C., Hartmann D.J., Chauvin M.A., Revol A., Morera A.M., Benahmed M.: Tumor necrosis factor a inhibits gonadotropin action in cultured porcine Leydig cells: site(s) of action. Endocrinology, 1991, 129: 2933–2940.

    PubMed  CAS  Google Scholar 

  41. Mauduit C., Chauvin M.A., Hartmann D.J., Revol A., Morera A.M., Benahmed M.: Interleukin-1a as a potent inhibitor of gonadotropin action in porcine Leydig cells: site(s) of action. Biol. Reprod., 1992, 46: 1119–1126.

    PubMed  Article  CAS  Google Scholar 

  42. Mauduit C., Benahmed M.: Growth factors in the testis function and development. In: R. M. S. Hamamah. Research in Male gametes: production and quality. Paris, Les Editions INSERM, 1996.

    Google Scholar 

  43. McLachlan R.I., Robsertson D.M., DeKrester D.M., Burger H.G.: Advances in the physiology of inhibin and inhibin-related peptides. Clin. Endocrinol., 1988, 29: 77–114.

    Article  CAS  Google Scholar 

  44. Mealy K., Robinson B., Millette C.F., Majzoub J., Wilmore D.W.: The testicular effects of tumor necrosis factor. Ann. Surg., 1990, 211: 470–475.

    PubMed  Article  CAS  Google Scholar 

  45. Mita M., Borland K., Price J.M., Hall P.F.: The influence of insulin and insulin-like growth factor-I on hexose transport by Sertoli cells. Endocrinology, 1985, 116: 987–992.

    PubMed  CAS  Google Scholar 

  46. Morera A.M., Cochet C., Keramidas M., Chauvin M.A., De Peretti E., Benahmed M.: Direct regulating effects of transforming growth factor beta on the Leydig cell steroidogenesis in primary culture. J. Steroid Biochem., 1988, 30: 443–447.

    PubMed  Article  CAS  Google Scholar 

  47. Murono E.P., Washburn A.L.: Fibroblast growth factor inhibits 5a-reductase activity in cultured immature Leydig cells. Mol. Cell Endocrinol., 1990, 68: R19-R23.

    PubMed  Article  CAS  Google Scholar 

  48. Murphy P.R., Moger W.H.: Short-term primary culture of mouse interstitial cells: effects of culture conditions on androgen production. Biol. Reprod., 1982, 27: 38–47.

    PubMed  Article  CAS  Google Scholar 

  49. Naz R.K., Kumar R.: Transforming growth factor b1 enhances expression of a 50 kDa protein related to 2′–5′ oligoadenylate synthetase in human sperm cells. J. Cell Physiol., 1991, 146: 156–163.

    PubMed  Article  CAS  Google Scholar 

  50. Naz R.K., Kaplan P.: Effects of epidermal growth factor on human sperm cell function. J. Androl., 1993, 14: 240–7.

    PubMed  CAS  Google Scholar 

  51. Naz R.K., Kaplan P.: Increased levels of interleukin-6 in seminal plasma of infertile men. J. Androl., 1994, 15: 220–227.

    PubMed  CAS  Google Scholar 

  52. Naz R.K., Chaturvedi M.M., Aggarwal B.B.: Role of cytokines and proto-oncogenes in sperm cell function: relevance to immunologic infertility. Am. J. Reprod. Immunol., 1994, 32: 26–37.

    PubMed  CAS  Google Scholar 

  53. Naz R.K., Minhas B.S.: Enhancement of sperm function for treatment of male infertility. J. Androl., 1995, 16: 384–388.

    PubMed  CAS  Google Scholar 

  54. Nehar D., Mauduit C., Revol A., Morera A.M., Behahmed M.: Effect of epidermal growth factor/transforming growth factor alpha on lactate production in porcine Sertoli cells: glucose transport and lactate dehydrogenase isozymes as potential sites of action. Mol. Cell Endocrinol., 1993, 92: 45–53.

    PubMed  Article  CAS  Google Scholar 

  55. Nehar D., Mauduit C., Boussouar F., Benahmed M.: Tumor Necrosis Factor a-stimulated lactate production is linked to an increase in lactate dehydrogenase A expression and activity in porcine cultured Sertoli cells. Endocrinology, 1997, sous presse.

  56. Nocera M., Chu T.M.: Transforming growth factor-b as an immunosuppressive protein in human seminal plasma. Am. J. Reprod. Immunol., 1993, 30: 1–8.

    PubMed  CAS  Google Scholar 

  57. Noguchi S., Ohba Y., Oka T.: Involvement of epidermal growth factor deficiency pathogenesis of oligozoospermia in streptozotocin-induced diabetic mice. Endocrinology, 1990, 127: 2136–2140.

    PubMed  CAS  Google Scholar 

  58. Novero V., Camus M., Tournaye H., et al.: Relationship between serum follicle stimulating hormone in the male and standard sperm parameters, and the results of intracytoplasmic sperm injection. Hum. Reprod., 1997, 12: 59–63.

    PubMed  Article  CAS  Google Scholar 

  59. Oonk R.B., Grootegoed J.A.: Insulin-like growth factor-I (IGF-I) receptors on Sertoli cells from immature rats and age dependent testicular binding of IGF-I and insulin. Mol. Cell Endocrinol., 1988, 55: 33–43.

    PubMed  Article  CAS  Google Scholar 

  60. Ovesen P., Flyvbjerg A., Orskov H.: Insulin-like growth factor I (IGF-I) and IGF binding proteins in seminal plasma before and after vasectomy in normal men. Fertil. Steril., 1995, 63: 913–918.

    PubMed  CAS  Google Scholar 

  61. Parvinen M., Soder O., Pekka M., Froysa B., Ritzen E.M.:In vitro stimulation of stage-specific deoxyribonucleic acid synthesis in rat seminiferous tubule segments by interleukin-1a. Endocrinology, 1991, 129: 1614–1620.

    PubMed  CAS  Google Scholar 

  62. Parvinen M., Pelto-Huikko M., Soder O., et al.: Expression of b-nerve growth factor and its receptor in rat seminiferous epithelium: specific function at the onset of meiosis. J. Cell Biol., 1992, 117: 629–641.

    PubMed  Article  CAS  Google Scholar 

  63. Pesonen K., Vinikka L., Koskimies A., Banks A.R., Nicolson M., Peheentupe J.: Size heterogeneity of epidermal growth factor in human body fluids. Life Sci., 1987, 40: 2489–2494.

    PubMed  Article  CAS  Google Scholar 

  64. Pollanen P., Soder O., Parvinen M.: Interleukin-1 alpha stimulation of spermatogonial proliferation in vivo. Reprod. Fertil. Dev., 1989, 1: 85–87.

    PubMed  Article  CAS  Google Scholar 

  65. Rajasekaran M., Hellstrom W.J.G., Naz R.K., Sikka S.C.: Oxidative stress and interleukins in seminal plasma during leukocytospermia. Fertil. Steril., 1995, 64: 166–171.

    PubMed  CAS  Google Scholar 

  66. Ramasharma K., Cabrera C.M., Li C.H.: Identification of insulin-like growth factor-II in human seminal and follicular fluids. Biochem. Biophys. Res. Commun., 1986, 140: 536–540.

    PubMed  Article  CAS  Google Scholar 

  67. Robertson D.M., Risbridger G.P., Hedger M., McLachlan R.I.: Growth factors in the control of testicular function. In: D. deKretser. Molecular biology of the male reproductive system. San Diego, Academic Press, 1993: 411–438.

    Google Scholar 

  68. Russell L.D., Weiss T., Goh J.C., Curl J.L.: The effects of submandibular gland removal on testicular and epididymal parameters. Tiss. Cell, 1990, 22: 263–268.

    Article  CAS  Google Scholar 

  69. Sanderson N., Factor V., Nagy P., et al.: Hepatic expression of mature transforming growth factor b1 in transgenic mice results in multiple tissue lesions. Proc. Natl. Acad. Sci. U. S. A. 1995, 92: 2572–2576.

    PubMed  Article  CAS  Google Scholar 

  70. Sandlow J.I., Feng H.-L., Cohen M.B., Sandra A.: Expression of c-kit and its ligand, Stem Cell Factor, in normal and subfertile human testicular tissu. J. Androl., 1996, 17: 403–408.

    PubMed  CAS  Google Scholar 

  71. Sharpe R.M.: Regulation of spermatogenesis. In: N. J. Knobil E. The Physiology of Reproduction. New York, Raven Press, 1994: pp 1363–1434

    Google Scholar 

  72. Shimoya K., Matsuzki N., Ida N., et al.: Detection of monocyte chemotactic and activating factor (MCAF) and interleukin (IL)-6 in human seminal plasma and effect of leukospermia on these cytokine levels. Am. J. Reprod. Immunol., 1995, 34: 311–316.

    PubMed  CAS  Google Scholar 

  73. Soder O., Bang P., Wahab A., Parvinen M.: Insulin-like growth factors selectively stimulate spermatogonia, but not meiotic deoxyribonucleic acid synthesis during rat spermatogenesis. Endocrinology, 1992, 131: 2344–2350.

    PubMed  Article  CAS  Google Scholar 

  74. Sordoillet C., Chauvin M.A., Revol A., Morera A.M., Benahmed M.: Fibroblast growth factor is a regulator of testosterone secretion in cultured immature Leydig cells. Mol. Cell. Endocrinol., 1988, 58: 283–286.

    PubMed  Article  CAS  Google Scholar 

  75. Sordoillet C., Chauvin M.A., de Peretti E., Morera A.M., Benahmed M.: Epidermal growth factor directly stimulates steroidogenesis in primary culture of porcine Leydig cells: actions and sites of action. Endocrinology, 1991, 128: 2160–2168.

    PubMed  CAS  Google Scholar 

  76. Sordoillet C., Chauvin M.A., Hendrick J.C., Franchimont P., Morera A.M., Benahmed M.: Sites of interaction between epidermal growth factor and transforming growth factor-beta 1 in the control of steroidogenesis in cultured porcine Leydig cells. Endocrinology, 1992, 130: 1352–1358.

    PubMed  Article  CAS  Google Scholar 

  77. Sundel A., Liabakk N., Austgulen R., Espevik T.: High concentrations of the soluble tumor necrosis factor receptor p55 in human seminal plasma. International Symposium on Male Infertility and Assisted Reproduction. April 21–24 1993, Genk, Belgium.

  78. Syed V., Khan S.A., Nieschlag E.: Epidermal growth factor stimulates testosterone production of human Leydig cells in vitro. J. Endocrinol. Invest., 1991, 14: 93–97.

    PubMed  CAS  Google Scholar 

  79. Tournaye H., Verheyen G., Nagy P., et al.: Are there any predictive factors for successful testicular sperm recovery in azoospermic patients? Hum. Reprod., 1997, 12: 80–86.

    PubMed  Article  CAS  Google Scholar 

  80. Tsutsumi O., Kurachi H., Oka T.: A physiological role for epidermal growth factor in male reproductive function. Science, 1986, 233: 975–977.

    PubMed  Article  CAS  Google Scholar 

  81. Van Dissel-Emiliani F.M.F., Grootenhuis A.J., De Jong F.H., De Rooij D.G.: Inhibin reduces spermatogonial numbers in testes of adult mice and chinese hamster. Endocrinology, 1989, 125: 1898–1903.

    Article  Google Scholar 

  82. Verhoeven G., Cailleau J.: Stimulatory effects of epidermal growth factor on steroidogenesis in Leydig cells. Mol. Cell Endocrinol., 1986, 47: 99–106.

    PubMed  Article  CAS  Google Scholar 

  83. Wartenberg H.: Differentiation and development of the testes. In: d. K. D. Burger H. The testis. New York, Raven Press, 1989: 67–118.

    Google Scholar 

  84. Xiong Y., Hales D.B.: The role of tumor necrosis factor-alpha in the regulation of mouse Leydig cell steroidogenesis. Endocrinology, 1993, 132: 2438–2444.

    PubMed  Article  CAS  Google Scholar 

  85. Yamamoto M., Miyake K.: Successful use of interferon for male infertility. Lancet, 1994, 34: 614.

    Article  Google Scholar 

  86. Yie S.-M., Lobb D.K., Clark D.A., Younglai E.V.: Identification of a transforming growth factor alpha-like molecule in human seminal plasma. Fertil. Steril., 1994, 61: 129–135.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03034929.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mauduit, C., Hamamah, S., Loras, B. et al. Rôle des facteurs de croissance et cytokines dans le testicule normal et pathologique. Androl. 7, 34–51 (1997). https://doi.org/10.1007/BF03034518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034518

Mots clés

  • Testicule
  • facteurs de croissance
  • cytokines
  • oligo et azzospermie sécrétoire
  • infertilité masculine

Key words

  • Testis
  • growth factors
  • cytokines
  • male infertility
  • oligo and azoospermia