Skip to main content
  • Environnement et Spermatogenèse
  • Published:

Effets d’une exposition à la Vinclozoline et à la Génistéine de la gestation à l’âge adulte sur la fonction de reproduction du ratWistar mâle: protocole et résultats préliminaires

Reproductive effects of chronic exposure (from conception to adulthood) to low concentrations of genistein and vinclozolin in male Wistar rats: protocol and preliminary results

Resume

Les perturbateurs endocriniens (EDs) présents dans l’environnement sont de plus en plus mis en cause pour expliquer les modifications de la fonction de reproduction mâle, y compris chez l’homme. Cependant, leurs mécanismes d’action sur la fonction de reproduction sont peu connus et le lien de causalité chez l’homme n’est pas démontré. Parmi les nombreuses études expérimentales rapportées, les conditions d’exposition sont le plus souvent très éloignées de la situation environnementale (doses élevées, courtes périodes d’expositon, une seule molécule). Le but de ce projet est d’étudier les effets d’une exposition à deux EDs isolés et associés: la génistéine, phyto-oestrogène et la vinclozoline, fongicide à activité antiandrogénique sur la fonction de reproduction du ratWistar mâle. Pour chaque molécule, 2 doses ont été choisies: une dose élevée et une dose faible compatible avec des expositions environnementales, avec une administration par gavage de la conception à l’âge adulte. Le protocole prévoyait le sacrifice d’une partie des ratons au sevrage et des rats adultes après accouplement, et les examens suivants: pesée des animaux et des organes, réserves spermatiques, histologie des organes de la reproduction et dosage des hormones sexuelles. De plus, une identification plus fine des effets reposera sur la morphométrie testiculaire, l’évaluation de la qualité nucléaire, du mouvement et du degré de fragmentation de l’ADN des spermatozoïdes. A la recherche des mécanismes possiblement en cause, il est prévu d’analyser les récepteurs hormonaux aux oestrogènes, androgènes, progestérone et FSH et d’étudier des modifications de l’apoptose des cellules germinales.

L’élevage des animaux a pu être mené à bien et les premiers résultats ont été:

  1. 1.

    la mise en évidence d’anomalies du développement testiculaire, des vésicules séminales, des épididymes et du pénis observées après exposition à de faible dose pour les composés testés et/ou leur combinaison;

  2. 2.

    une diminution de la mobilité progressive et d’autres paramètres cinétiques observée dès les faibles doses pour les molécules isolées ou associées;

  3. 3.

    une diminution des capacités de reproduction, surtout pour les mâles exposés à la faible dose de vinclozoline et à la combinaison avec la génistéine.

Ces résultats originaux nous incitent maintenant à préciser les effets au niveau tissulaire et cellulaire et à étudier certains des mécanismes possiblement en cause.

Abstract

Current evidence indicates that endocrine disrupters (EDs) can induce adverse effects on the male reproductive tract in various mammalian species. Recent reports indicate deterioration in male reproductive health in several human populations, but the evidence for a causal link with endocrine disruption is still weak. In addition, the experimental conditions of most of the reportedin vivo studies are not representative of environmental exposures (for example, high doses, short-term exposure, a single ED) and the mechanisms by which EDs disrupt the reproductive system are poorly understood. The objective of the present study is to develop an animal model to assess the reproductive effects and study the putative cellular and molecular mechanisms involved after exposure to genistein (phytoestrogen) and vinclozolin (fungicide with a known antiandrogenic potential) alone or in combination. The study will be performed in male Wistar rats, with administration of low and high doses of the compounds from conception to adulthood and a subset of the males in each treatment group will be mated with unexposed females. We plan to assess the level of sperm production, histology of the reproductive organs, motility and morphometry of spermatozoa and hormone levels, as well as DNA fragmentation of spermatozoa and determination of the number of germ cells, Sertoli cells and the diameters of seminiferous tubules. Estrogen, androgen, progesterone and FSH receptors will be detected and quantified and the level of testicular apoptosis and several apoptosis pathways will be studied to determine the putative cellular and molecular mechanisms involved. The preliminary results confirmed the developmental effects previously reported for high doses of vinclozolin. More interestingly, they indicated a number of deleterious effects for male rats exposed to low dosages alone or mixtures of low and high dosages compared to controls and rats exposed to high dosages alone. For example, a number of developmental anomalies of the genitalia were observed and a significant decrease of sperm motility and motion and fertilizing ability were observed. These preliminary results provide evidence that chronic exposure to environmental levels of EDs or mixtures of EDs have a detrimental impact on the male reproductive tract. The next step involves assessment of the anatomical disorders and the study of some of the cellular and molecular mechanisms possibly involved.

References

  1. ADAMI H., BERGSTROM R., MOHNER M., et al.: Testicular cancer in nine northern european countries. Int. J. Cancer, 1994, 59: 33–38.

    Article  PubMed  CAS  Google Scholar 

  2. ADLERCREUTZ H., BANNWART C., WAHALA K., et al.: Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J. Steroid. Biochem. Mol. Biol., 1993, 44: 147–153.

    Article  PubMed  CAS  Google Scholar 

  3. AMARAL MENDES J.J.: The endocrine disrupters: a major medical challenge. Food Chem. Toxicol., 2002, 40: 781–788.

    Article  PubMed  CAS  Google Scholar 

  4. AUGER J., KUNSTMANN J.M., CZYGLIK F., JOUANNET P.: Decline in semen quality among fertile men in Paris during the last 20 years. New Engl. J. Med., 1995, 332: 281–285.

    Article  PubMed  CAS  Google Scholar 

  5. BENNETAU-PELISSERO C.: Les phytoestrogènes dans l’alimentation et la thérapie: discussion. Cah. Nutr. Diét., 2001, 36: 25–38.

    CAS  Google Scholar 

  6. BILLIG H., FURUTA I., RIVIER C., et al.: Apopotosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology, 1995, 136, 1: 5–12.

    Article  PubMed  CAS  Google Scholar 

  7. BOOCKFOR F.R., BLAKE C.A.: Chronic administration of 4-tert-octylphenol to adult male rats causes shrinkage of the testes of male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities. Biol. Reprod., 1997, 57: 267–277.

    Article  PubMed  CAS  Google Scholar 

  8. BREINHOLT V., HOSSAINI A., SVENDSEN G.W., et al.: Estrogenic activity of flavomoids in mice. The importance of estrogen receptor distribution, metabolism and biovailability. Food Chem. Toxicol., 2000, 38: 555–564.

    Article  PubMed  CAS  Google Scholar 

  9. CARLSEN E., GIWERCMAN A., KEIDING N., SKAKKEBAEK N.E.: Evidence for decreasing quality of semen during past 50 years. Br. Med. J., 1992, 305: 609–613.

    Article  CAS  Google Scholar 

  10. DAMGAARD I.N., MAIN K.M., TOPPARI J., SKAKKEBÆK N.E.: Impact of exposure to endocrine disrupters in utero and in childhood on adult reproduction. Baillière’s Best Practice and Research in Clinical Endocrinology and Metabolism, 2002, 16: 289–309.

    Article  CAS  Google Scholar 

  11. DASTON G.P., GOOCH J.W., BRESLIN W.J. et al.: Environmental estrogens and reproductive health: a discussion of the human and environmental data. Reprod. Toxicol., 1997, 11: 465–481.

    Article  PubMed  CAS  Google Scholar 

  12. DELCLOS K.B., BUCCI J.C., LOMAX L.G., et al.: Effects of dietary genistein exposure during development on male and female CD [Sprague-Dawley] rats. Reprod. Toxicol., 2001, 15: 647–663.

    Article  PubMed  CAS  Google Scholar 

  13. EUSTACHE F., AUGER J., JOUANNET P.: Effets de deux perturbateurs endocriniens, lap, p’-DDE et le BBP, sur la fonction testiculaire et l’ADN des cellules germinales chez la souris. Hypothèses, 2002, 5: 19–22.

    Google Scholar 

  14. FURUKAWA Y., KIMIJIMA I., ABE R.: Immunohistochemical image analysis of estrogen and progesterone receptors in breast cancer. Breast Cancer, 1998, 25: 375–380.

    Article  Google Scholar 

  15. GILL G.W., SCHUMACHER G.F.B., BIBBO M., et al.: Association of diethylstilbestrol exposure in utero with cryptorchidism, testicular hypoplasia and semen abnormalities. J. Urol., 1979, 122: 36–39.

    PubMed  CAS  Google Scholar 

  16. GOYAL H.O., BRADEN T.D., MANSOUR M., et al.: Diethylstilbestrol-treated adult rats with altered epididymal sperm numbers and sperm motility parameters, but without alterations in sperm production and sperm morphology. Biol. Reprod., 2001, 64: 927–934.

    Article  PubMed  CAS  Google Scholar 

  17. GRAY L.E. Jr.: Xenoendocrine disrupters: laboratory studies on male reproductive effects. Toxicol. Lett., 1998, 102–103: 331–335.

    Article  PubMed  Google Scholar 

  18. GRAY L.E. Jr, OSTBY J., MONOSSON E., KELCE W.R.: Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol. Ind. Health, 1999, 15: 48–64.

    Article  PubMed  Google Scholar 

  19. KELCE W.R., STONE C.R., LAWS S.C., GRAY L.E., KEMPPAINEN J.A., WILSON E.M.: Persistent DDT metabolitep, p’-DDE is a potent androgen receptor antagonist. Nature, 1995, 375 [6532]: 581–585.

    Article  PubMed  CAS  Google Scholar 

  20. KELCE W.R., LAMBRIGHT C.R., GRAY L.E. Jr, ROBERTS K.P.: Vinclozolin andp, p’-DDE alter androgen-dependent gene expression:in vivo confirmation of an androgen receptor-mediated mechanism. Toxicol. Appl. Pharmacol., 1997, 142: 192–200.

    Article  PubMed  CAS  Google Scholar 

  21. KIM E.D., LIN W.W., ABRAMS J., LIPSHULTZ L.I.: Testis biopsy image analysis effectively quantifies spermatogenetic cell types. J. Urol., 1997, 157: 147–150.

    Article  PubMed  CAS  Google Scholar 

  22. KLIP H., VERLOOP J., VAN GOOL J.D., KOSTER M.E.T.A., BURGER C.W., VAN LEEUWEN F.E.: Hypospadias in sons of women exposed to diethylstilbestrolin utero: a cohort study. Lancet, 2002, 359: 1102–1107.

    Article  PubMed  CAS  Google Scholar 

  23. LUCONI M., FORTI G., BALDI E.: Genomic and nongenomic effects of estrogens: molecular mechanisms of action and clinical implications for male reproduction. J. Steroid. Biochem. Mol. Biol., 2002, 80: 369–381.

    Article  PubMed  CAS  Google Scholar 

  24. MONOSSON E., KELCE W.R., LAMBRIGHT C., et al.: Peripubertal exposure to the antiandrogenic fungicide, vinclozolin, delays puberty, inhibits the development of androgen-dependent tissues, and alters androgen receptor function in the male rat. Toxicol. Ind. Health, 1999, 15: 65–79.

    PubMed  CAS  Google Scholar 

  25. OKAHARA A., NOMURA A., TANIOKA H., et al.: Collaborative work to evaluate toxicity on male reproductive organs by repeated dose studies in rats: effects of repeated doses of flutamide for 2 and 4 weeks. J. Toxicol. Science, 2000, 25: 63–70.

    CAS  Google Scholar 

  26. PAULOZZI L.J., ERICKSON D., JACKSON R.J.: Hypospadias trends in two US surveillance systems. Pediatrics, 1997, 100: 831–834.

    Article  PubMed  CAS  Google Scholar 

  27. PELLETIER G.: Localization of androgen and estrogen receptors in rat and primate tissues. Histol. Histopathol., 2000, 15: 1261–1270.

    PubMed  CAS  Google Scholar 

  28. PETRELLI G., MANTOVANI A.: Environmental risk factors and male fertility and reproduction. Contraception, 2002, 65: 297–300.

    Article  PubMed  CAS  Google Scholar 

  29. SANDERSON J.T., BOERMA J., GIDEON W.A. et al.: Induction and inhibition of aromatase [CYP19] activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicol. Appl. Pharmacol., 2002, 182: 44–54.

    Article  PubMed  CAS  Google Scholar 

  30. SANTTI R., MÄKELÄ S., STRAUSS L. et al.: Phytoestrogens: potential endocrine disruptors in males. Toxicol. Ind. Health, 1998, 14: 223–237.

    PubMed  CAS  Google Scholar 

  31. SHARPE R.M.: Environmental oestrogens and male infertility. Pure Appl. Chem., 1998, 70: 1685–1701.

    Article  CAS  Google Scholar 

  32. SHARPE R.M.: The ‘oestrogen hypothesis’ — where do we stand now? Int. J. Androl., 2003, 26: 2–15.

    Article  PubMed  CAS  Google Scholar 

  33. SHETTY J., MARATHE G.K., DIGHE R.R.: Specific immunoneutralization of FSH leads to apoptotic cell death of the pachytene spermatocytes and spermatogonial cells in the rat. Endocrinology, 1996, 137: 2179–2182.

    Article  PubMed  CAS  Google Scholar 

  34. SHIBAYAMA T., FUKATA H., SAKURAI K. et al.: Neonatal exposure to genistein reduces expression of estrogen receptor alpha and androgen receptor in testes of adult mices. Endoc. J., 2001, 48: 655–663.

    Article  CAS  Google Scholar 

  35. SINHA HIKIM A.P., RAJAVASHISTH T.B., SINHA HIKIM I. et al.: Significance of apoptosis in the temporal and stage-specific loss of germ cells in the adult rat after gonadotrophin deprivation. Biol. Reprod., 1997, 57: 1193–1201.

    Article  PubMed  CAS  Google Scholar 

  36. SWANN S.H., ELKIN E.P., FENSTER L.: Have sperm densities declined? A reanalysis of global trend data. Environ. Health Perspec., 1997, 105: 1228–1232.

    Article  Google Scholar 

  37. TEILMANN G., JUUL A., SKAKKEBAEK N.E., TOPPARI J.: Putative effects of endocrine disrupters on pubertal development in the human. Best Practice Res. Clin. Endocrinol. Metab., 2002, 16, 105–121.

    Article  CAS  Google Scholar 

  38. TOPPARI J., LARSEN J.C., CHRISTIANSEN P. et al.: Male reproductive health and environmental xenoestrogens. Environ. Health Perspect., 1996, 104, Suppl 4, 741.

    Article  PubMed  CAS  Google Scholar 

  39. TOPPARI J., KAVELA M., VIRTAINEN H.E.: Trends in the incidence of cryptorchidism and hypospadias and methodological limitations of registry-based data. Hum. Reprod. Update, 2001, 7: 282–286.

    Article  PubMed  CAS  Google Scholar 

  40. VERDEAL K., RYAN R.S.: Naturally occuring estrogens in plant foodstuffs. A review. J. Food Protect., 1979, 42: 577–583.

    CAS  Google Scholar 

  41. WEBER K.B., SETCHELL K.D.R., STOCCO D.M., LEPHART E.D.: Dietary soy-phytoestrogens decrease testosterone levels and prostate weight without altering LH, prostate 5a-reductase or testicular steroidogenic accute regulatory peptide levels in adult male Sprague-Dawley rats. J. Endocrinol., 2001, 170: 591–599.

    Article  PubMed  CAS  Google Scholar 

  42. WOLF C.J., LEBLANC G.A., OSTBY J.S., GRAY L.E., Jr.: Characterization of the period of sensitivity of fetal male sexual development to vinclozolin. Toxicol. Sciences, 2000, 55: 152–161.

    Article  CAS  Google Scholar 

  43. WILLIAMS K., FISHER J.S., TURNER K.J., et al.: Relationship between expression of sex steroid receptors and structure of the seminal vesicles after neonatal treatment of rats with potent or weak estrogens. Environ. Health Perspect., 2001, 109: 1227–1235.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Eustache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eustache, F., Lesaffre, C., Cannivenc, M.C. et al. Effets d’une exposition à la Vinclozoline et à la Génistéine de la gestation à l’âge adulte sur la fonction de reproduction du ratWistar mâle: protocole et résultats préliminaires. Androl. 13, 170–178 (2003). https://doi.org/10.1007/BF03034432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034432

Mots clés

Key-Words