Skip to main content
  • Génétique de l’Infertilité Masculine
  • Published:

Facteurs impliqués dans le remodelage de la chromatine au cours de la spermiogenèse

Factors involved in chromatin remodelling during spermatogenesis

Resume

Les spermatides rondes sont les cellules issues de la méiose dont le noyau haploïde présente initialement une structure similaire à celle d’une cellule somatique. Au cours de la maturation post-méiotique de la spermatide, ou spermiogenèse, la chromatine subit un remodelage au cours duquel le noyau de la spermatide s’allonge puis se condense pour former le noyau spermatique, dont la chromatine présente une structure très spécifique et très compacte. Lors de ce remodelage, les histones sont remplacées par les protéines de transition puis par les protamines, protéines nucléaires spécifiques du spermatozoïde. Immédiatement avant leur remplacement, les protéines histones sont hyperacétylées. Nous avons entrepris de caractériser précisément l’acétylation des histones cœur du nucléosome au cours de la spermatogenèse murine. Nous avons ainsi montré que, chez la souris, les histones cœur H2A, H2B, H3 et H4 sont hyperacétylées dans les spermatides en cours d’élongation. Nous avons ensuite montré qu’une dégradation des histones déacétylases (HDACs) est responsable de cette augmentation brutale du niveau d’acétylation en début d’élongation. Enfin, chez l’homme, nos données suggèrent qu’un processus semblable est mis en jeu lors de la spermatogenèse normale. De plus, une forte déplétion en cellules germinales, telle qu’elle est observée dans les syndromes des cellules de Sertoli isolées (SCO), est associée a une augmentation très importante de l’acétylation du noyau des cellules de Sertoli. L’ensemble de ces données apporte les bases nécessaires à la compréhension des mécanismes et à l’identification de facteurs impliqués dans les différentes étapes du remodelage postméiotique de la chromatine.

Abstract

Round spermatids are post-meiotic cells with a haploid genome contained in a nucleus, with a structure initially similar to that of the somatic cell nucleus. During spermatogenesis, the spermatid nucleus undergoes drastic remodelling during which it first elongates and then condenses into the very specific and tightly packaged structure of the sperm nucleus. During this remodelling dthe histones are replaced by transition proteins, which, in turn, are replaced by protamines, the specific nuclear proteins of the spermatozoa. Immediately prior to their replacement, the histones are hyperacetylated. The first part of our work was to precisely characterise the changes in histone acetylation during murine spermatogenesis. We have shown that the core histones H2A, H2B, H3 and H4 are hyperacetylated in the elongating spermatids. We have also shown that these changes in acetylation are associated with degradation of the enzymes responsible for histone deacetylation, histone deacetylases or HDACs, while histone acetyl transferases are still present in these cells. The histone acetylation pattern was also investigated during human spermatogenesis, revealing that histone hyperacetylation in the nucleus of elongating spermatids, which appears to be conserved during the course of evolution, also occurs during human spermatogenesis. Moreover, our data obtained from the testes of men with severely altered spermatogenesis, including SCO syndromes (Sertoli Cells Only Syndromes), show that a global hyperacetylation of the Sertoli cell nuclei is associated with an absence of meiotic and post-meiotic cells. This suggests that the global histone acetylation variations observed during spermatogenesis are part of a signalling pathway involving germ cell — Sertoli cell communication. Altogether, these data provide a basis for a better understanding of the mechanisms and identification of the factors involved in post-meiotic remodelling of chromatin.

References

  1. BALHORN R., GLEDHILL B.L., WYROBEK A.J.: Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry, 1977, 16: 4074–4080.

    Article  PubMed  CAS  Google Scholar 

  2. BALHORN R.: A model for the structure of chromatin in mammalian sperm. J. Cell Biol., 1982, 93: 298–305.

    Article  PubMed  CAS  Google Scholar 

  3. BALHORN R., WESTON S., THOMAS C., WYROBEK A.J.: DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp. Cell Res., 1984, 150: 298–308.

    Article  PubMed  CAS  Google Scholar 

  4. BALHORN R.: Mammalian protamines: structure and molecular interactions. In: Adolf K. eds. Molecular biology of chromsome function. New-York, Springer Verlag, 1989: 366–395.

    Google Scholar 

  5. BERGER S.L.: Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev., 2002, 12: 142–148.

    Article  PubMed  CAS  Google Scholar 

  6. BREWER L., CORZETT M., BALHORN R.: Condensation of DNA by spermatid basic nuclear proteins. J. Biol. Chem., 2002, 38: 895–900.

    Google Scholar 

  7. CHEUNG W.L., BRIGGS S.D., ALLIS C.D.: Acetylation and chromosomal functions. Curr. Opin. Cell. Biol., 2000, 12: 326–333.

    Article  PubMed  CAS  Google Scholar 

  8. CHRISTENSEN M.E., DIXON G.H.: Hyperacetylation of histone H4 correlates with the terminal, transcriptionally inactive stages of spermatogenesis in rainbow trout. Dev. Biol., 1982, 93: 404–415.

    Article  PubMed  CAS  Google Scholar 

  9. COOK P.R.: The transcriptional basis of chromosome pairing. J. Cell Sci., 1997, 110: 1033–1040.

    PubMed  CAS  Google Scholar 

  10. COSMA M.P., TANAKA T., NASMYTH K.: Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell, 1999, 97: 299–311.

    Article  PubMed  CAS  Google Scholar 

  11. DOENECKE D., DRABENT B., BODE C., et al.: Histone gene expression and chromatin structure during spermatogenesis. Adv. Exp. Med. Biol., 1997, 424: 37–48.

    PubMed  CAS  Google Scholar 

  12. FEATHERSTONE M.: Coactivators in transcription initiation: here are your orders. Curr. Opin. Genet. Dev., 2002, 12: 149–155.

    Article  PubMed  CAS  Google Scholar 

  13. GATEWOOD J.M., COOK G.R., BALHORN R., SCHMID C.W., BRADBURY E.M.: Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J. Biol. Chem., 1990, 265: 20662–20666.

    PubMed  CAS  Google Scholar 

  14. GRIMES S.R. Jr., HENDERSON N.: Hyperacetylation of histone H4 in rat testis spermatids. Exp. Cell Res., 1984, 152: 91–97.

    Article  PubMed  CAS  Google Scholar 

  15. GRIMES S.R. Jr., HENDERSON N.: Acetylation of rat testis histones H2B and TH2B. Dev. Biol., 1984, 101: 516–521.

    Article  PubMed  CAS  Google Scholar 

  16. GRIMES S.R. Jr., SMART P.G.: Changes in the structural organization of chromatin during spermatogenesis in the rat. Biochim. Biophys. Acta, 1985, 824: 128–139.

    PubMed  CAS  Google Scholar 

  17. HAZZOURI M., PIVOT-PAJOT C., FAURE A.K., et al.: Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur. J. Cell Biol., 2000, 79: 950–960.

    Article  PubMed  CAS  Google Scholar 

  18. HECHT N.B.: Molecular mechanisms of male germ cell differentiation. Bioessays, 1998, 20: 555–561.

    Article  PubMed  CAS  Google Scholar 

  19. HESS R.A.: Spermatogenesis, overview. In: Knobil E., Neill J.D. eds. Encyclopedia of Reproduction. San Diego, Academic Press, 1999.

    Google Scholar 

  20. KENNEDY B.P., DAVIES P.L.: Acid-soluble nuclear proteins of the testis during spermatogenesis in the winter flounder. Loss of the high mobility group proteins. J. Biol. Chem., 1980, 255: 2533–2539.

    PubMed  CAS  Google Scholar 

  21. KENNEDY B.P., DAVIES P.L.: Phosphorylation of a group of high molecular weight basic nuclear proteins during spermatogenesis in the winter flounder. J. Biol. Chem., 1981, 256: 9254–9259.

    PubMed  CAS  Google Scholar 

  22. KIERSZENBAUM A.L., TRES L.L.: Structural and transcriptional features of the mouse spermatid genome. J. Cell Biol., 1975, 65: 258–270.

    Article  PubMed  CAS  Google Scholar 

  23. KIERSZENBAUM A.L., TRES L.L.: RNA transcription and chromatin structure during meiotic and postmeiotic stages of spermatogenesis. Fed. Proc., 1978, 37: 2512–2516.

    PubMed  CAS  Google Scholar 

  24. KISTLER W.S., HENRIKSEN K., MALI P., PARVINEN M.: Sequential expression of nucleoproteins during rat spermiogenesis. Exp. Cell Res., 1996, 225: 374–381.

    Article  PubMed  CAS  Google Scholar 

  25. KREBS J.E., KUO M.H., ALLIS C.D., PETERSON C.L.: Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes. Dev., 1999, 13: 1412–1421.

    Article  PubMed  CAS  Google Scholar 

  26. KUO M.H., BROWNELL J.E., SOBEL R.E., et al.: Transcription-linked acetylation by Gen5p of histones H3 and H4 at specific lysines. Nature, 1996, 383: 269–272.

    Article  PubMed  CAS  Google Scholar 

  27. KUO M.H., ALLIS C.D.: Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays, 1998, 20: 615–626.

    Article  PubMed  CAS  Google Scholar 

  28. LOIDL P., GROBNER P.: Postsynthetic acetylation of histones during the cell cycle: a general function for the displacement of histones during chromatin rearrangements. Nucleic Acids Res., 1987, 15: 8351–8366.

    Article  PubMed  CAS  Google Scholar 

  29. MEISTRICH M.L., TROSTLE-WEIGE P.K., LIN R., BHATNAGAR Y.M., ALLIS C.D.: Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol. Reprod. Dev., 1992, 31: 170–181.

    Article  PubMed  CAS  Google Scholar 

  30. MOENS P.B.: Histones H1 and H4 of surface-spread meiotic chromosomes. Chromosoma, 1995, 104: 169–174.

    Article  PubMed  CAS  Google Scholar 

  31. NAYERNIA K., ADHAM I., KREMLING H. et al.: Stage and developmental specific gene expression during mammalian spermatogenesis. Int. J. Dev. Biol., 1996, 40: 379–383.

    PubMed  CAS  Google Scholar 

  32. OGURA A., YANAGIMACHI R.: Spermatids as male gametes. Reprod. Fertil. Dev., 1995, 7: 155–158; discussion 158–159.

    Article  CAS  Google Scholar 

  33. OGURA A., INOUE K., MATSUDA J.: Mouse spermatid nuclei can support full term development after premature chromosome condensation within mature oocytes. Hum. Reprod., 1999, 14: 1294–1298.

    Article  PubMed  CAS  Google Scholar 

  34. OKO R.J., JANDO V., WAGNER C.L., KISTLER W.S., HERMO L.S.: Chromatin reorganization in rat spermatids during the disappearance of testis-specific histone, H1t, and the appearance of transition proteins TP1 and TP2. Biol. Reprod., 1996, 54: 1141–1157.

    Article  PubMed  CAS  Google Scholar 

  35. OLIVA R., MEZQUITA C.: Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids. Nucleic Acids Res., 1982, 10: 8049–8059.

    Article  PubMed  CAS  Google Scholar 

  36. PERRY C.A., DADD C.A., ALLIS C.D., ANNUNZIATO A.T.: Analysis of nucleosome assembly and histone exchange using antibodies specific for acetylated H4. Biochemistry, 1993, 32: 13605–13614.

    Article  PubMed  CAS  Google Scholar 

  37. PETERSON C.L.: ATP-dependent chromatin remodeling: going mobile. FEBS Lett., 2000, 476: 68–72.

    Article  PubMed  CAS  Google Scholar 

  38. POCCIA D.: Remodeling of nucleoproteins during gametogenesis, fertilization, and early development. Int. Rev. Cytol., 1986, 105: 1–65.

    Article  PubMed  CAS  Google Scholar 

  39. RISLEY M.S.: Chromatin organization in sperm. London, CRC Press, 1990.

    Google Scholar 

  40. SASSONE-CORSI P.: Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science, 2002, 296: 2176–2178.

    Article  PubMed  CAS  Google Scholar 

  41. SODERSTROM K.O., PARVINEN M.: RNA synthesis in different stages of rat seminiferous epithelial cycle. Mol. Cell. Endocrinol., 1976, 5: 181–199.

    Article  PubMed  CAS  Google Scholar 

  42. STRAHL B.H., ALLIS C.D.: The language of covalent histone modifications. Nature, 2000, 403: 41–45.

    Article  PubMed  CAS  Google Scholar 

  43. TESARIK J., MENDOZA C., TESTART J.: Viable embryos from injection of round spermatids into oocytes [letter]. N. Engl. J. Med., 1995, 333: 525.

    Article  PubMed  CAS  Google Scholar 

  44. VANDERZWALMEN P., NIJS M., STECHER A., et al.: Is there a future for spermatid injections? Hum. Reprod., 1998, 13: 71–84.

    Article  PubMed  Google Scholar 

  45. VIGNALI M., HASSAN A.H., NEELY K.E., WORKMAN J.L.: ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol., 2000, 20: 1899–1910.

    Article  PubMed  CAS  Google Scholar 

  46. WARD W.S.: The structure of the sleeping genome: implications of sperm DNA organization for somatic cells. J. Cell Biochem., 1994, 55: 77–82.

    Article  PubMed  CAS  Google Scholar 

  47. WARD W.S., ZALENSKY A.O.: The unique, complex organization of the transcriptionally silent sperm chromatin. Crit. Rev. Euk. Gene Expr., 1996, 6: 139–147.

    CAS  Google Scholar 

  48. WARD W.S., KIMURA Y., YANAGIMACHI R.: An intact sperm nuclear matrix may be necessary for the mouse paternal genome to participate in embryonic development. Biol. Reprod., 1999, 60: 702–706.

    Article  PubMed  CAS  Google Scholar 

  49. WARD W.S., KISHIKAWA H., AKUTSU H., YANAGIMACHI H., YANAGIMACHI R.: Further evidence that sperm nuclear proteins are necessary for embryogenesis. Zygote, 2000, 8: 51–56.

    Article  PubMed  CAS  Google Scholar 

  50. WOLFFE A.: Chromatin- Structure and function. 2nd edition. Academic Press, London, 1995.

    Google Scholar 

  51. WOUTERS-TYROU D., MARTINAGE A., CHEVAILLIER P., SAUTIERE P.: Nuclear basic proteins in spermiogenesis. Biochimie, 1998, 80: 117–128.

    Article  PubMed  CAS  Google Scholar 

  52. YANAGIMACHI R.: Production of mice through intracytoplasmic injection of sperm or spermatogenic cells. Protoplasma, 1999, 206: 278–281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Rousseaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousseaux, S., Caron, C., Pivot-Pajot, C. et al. Facteurs impliqués dans le remodelage de la chromatine au cours de la spermiogenèse. Androl. 13, 139–147 (2003). https://doi.org/10.1007/BF03034428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034428

Mots Clés

Key-Words