Skip to main content
  • Azoospermie
  • Published:

Absence de corrélation génotype-phénotype dans les absences de canaux déférents

Lack of correlation between reproductive tract abnormalities and CFTR gene mutations in men with absence of the vas deferens

Résumé

L’absence des canaux déférents est une cause rare d’infertilité masculine associée dans 80% des cas à des mutations sur le géne de la mucoviscidose. Cependant, les corrélations entre le génotype et le phénotype anatomique des voies excrétrices du sperme ont été peu étudiées.

À partir d’une série de 47 patients porteurs d’une absence des canaux déférents, nous avons recherché les 13 mutations les plus fréquentes de la mucoviscidose, l’allèle 5T de l’intron 8 et exploré le tractus uro-génital par échographie rénale, scrotale et endorectale.

Quarante patients avaient une absence bilatérale des canaux déférents (ABCD) et 7 patients présentaient une absence unilatérale d’un canal déférent.

Trente patients (64%) étaient porteur dune anomalie d’une anomalie du gène CFTR parmi eux, 47% avaient une mutation ΔF 508 et 63% étaient porteurs de l’allèle 5T. Dixsept patients n’avaient aucune des mutations recherchées, dont 3 patients porteurs d’une agénésie rénale unilatérale et 3 patients porteurs d’une absence unilatérale d’un canal déférent.

La comparaison des phénotypes entre les différents groupes ne fait ressortir aucune différence concernant l’état des vésicules séminales, la symétrie des anomalies vésiculaires et épididymaires. On constate une différence significative des anomalies épididymaires qui sont plus fréquentes dans le groupe sans mutation que dans le groupe avec des mutations (test de chi2, p=0,01).

Les moyennes des volumes testiculaires sont significativement plus faibles entre les patients avec au moins une mutation CFTR et les patients sans mutation ou seulement avec l’allèle 5T: 15,1±4,5 ml versus 10,7±4,1 ml respectivement (p<0,001, test de Student).

En conclusion, dans les absences isolées des canaux déférents, le phénotype anatomique des voies excrétrices du sperme n’est pas corrélé au génotype de la mucoviscidose. Ces résultats suggèrent que d’autres déterminants génétiques et/ou environnementaux sont nécessaires pour rendre compte d’un mécanisme pathogénique commun à ces anomalies. Le volume testiculaire abaissé chez les patients sans mutation ou porteurs de l’allèle 5T seul suppose l’existence d’un facteur sécrétoire ou mixte (obstructif et sécrétoire) non identifié.

Abstract

Absence of the vas deferens is a rare cause of male infertility, associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene in about 80% of cases.

Only limited published data are available concerning the correlation between genotype and reproductive tract abnormalities observed in this disease: presence or absence of seminal vesicles and parts of the epididymis, symmetrical or asymmetrical lesions, testicular volumes.

We screened 47 patients for the 13 most common CFTR mutations on the cystic fibrosis gene and for the 5-thymidine variant of the polythymidine tract of intron 8. Renal, scrotal and transrectal ultrasonography was performed in each patient to explore the testes and reproductive tract. All patients presented absence of the ampullae of the vas deferens.

Forty patients presented bilateral absence of the vas deferens and 7 presented unilateral absence of the vas deferens.

At least one mutation of the cystic fibrosis gene was present in 64% of cases: 47% had the ΔF 508 mutation and 63% had the 5T allele. No mutation was detected in seventeen patients, including 3 patients with unilateral renal agenesis and 3 patients with unilateral absence of the vas deferens.

No differences were observed for seminal vesicles and symmetry of vesicular and epididymal abnormalities between patients with or without CFTR gene mutations, but epididymal abnormalities were significantly more frequent in the group without mutation (p=0.01).

Testicular volumes were significantly lower in the patients without mutation or with the 5T allele only, than in the patients with at least one CFTR gene mutation: 10.7±4.1 ml versus 15.1±4.5 ml, respectively (p<0.001).

In conclusion, in cases of isolated absence of the vas deferens, there is no difference in sperm duct abnormalities between patients with or without CFTR gene mutation. These results suggest that other genetic or environmental determinants are required to explain a common pathogenesis for these malformations. The decreased testicular volume of patients without CFTR gene mutation or with the 5T allele only suggests the existence of an unidentified secretory or mixed factor involved in these forms of absence of the vas deferens.

References

  1. ANGUIANO A., OATES R.D., AMOS J.A.et al.: Congenital absence of the vas deferens: a primarily genital form of cystic fibrosis. JAMA, 1992, 267: 1794–7.

    Article  CAS  PubMed  Google Scholar 

  2. AUGARTEN A., YAHAV Y., KEREM B.S., HALLE D., LAUFER J.et al.: Congenital bilateral absence of vas deferens in the absence of cystic fibrosis. Lancet, 1994, 344: 1473–4.

    Article  CAS  PubMed  Google Scholar 

  3. BEAR CEet al.: Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell, 1992, 68: 809–18.

    Article  CAS  PubMed  Google Scholar 

  4. BREMER S., HOOF T., WILKE M.et al.: Quantitative expression patterns of multidrug-resistance P-glycoprotein (MDR 1) and differentially spliced cystic-fibrosis transmembrance-conductance regulator mRNA transcripts in human epithelia. Eur. J. Biochem., 1992, 206: 137–49.

    Article  CAS  PubMed  Google Scholar 

  5. CASALS T., BASSAS L., EGOZCUE S.et al.: Heterogeneity for mutations in the CFTR gene and clinical correlations in patients with congenital absence of the vas deferens. Hum. Reprod., 2000, 15: 1476–83.

    Article  CAS  PubMed  Google Scholar 

  6. CHILLON M., CASALS T., MERCIER B., BASSAS L., LISSENS W.et al.: Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N. Engl. J. Med., 1995, 332: 1475–80.

    Article  CAS  PubMed  Google Scholar 

  7. CHU C.S., TRAPNELL B.C., CURRISTIN S., CUTTING G.R., CRYSTAL R.G.: Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat. Genet., 1993, 3: 151–6.

    Article  CAS  PubMed  Google Scholar 

  8. CHU C.S., TRAPNELL B.C., MURTAGH J.J. JRet al.: Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrance conductance regulator gene mRNA transcripts in normal bronchial epithelium. EMBO J., 1991, 10: 1355–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. CLAUSTRES M., GUITTARD C., BOZON D.et al.: Spectrum of CFTR mutations in cystic fibrosis and congenital absence of the vas deferens in France. Hum. Mutat. 2000, 16 (2): 143–56.

    Article  CAS  PubMed  Google Scholar 

  10. CONSORTIUM CFGA. 1996. Cystic fibrosis mutation data. Banque de données non publiée, disponible sur Internet.http://www.genet.sickkids.on.ca/cftr/

  11. The Cystic Fibrosis Genotype-Phenotype Consortium. Correlation between genotype and phenotype in patients with cystic fibrosis. N. Engl. J. Med. 1993, 329: 1308–13.

    Article  Google Scholar 

  12. DELANEY S.J., RICH D.P., THOMSON S.A.et al.: Cystic fibrosis transmembrane conductance regulator splice variants are not conserved and fail to produce chloride channels. Nat. Genet., 1993, 4: 426–31.

    Article  CAS  PubMed  Google Scholar 

  13. DE LA TAILLE A. RIGOT JM, MAHE P.et al.: Correlation between genito-urinary anomalies, semen analysis and CFTR genotype in patients with congenital bilateral absence of the vas deferens. Br. J. Urol., 1998, 81: 614–19.

    Article  PubMed  Google Scholar 

  14. DORK T., DWORNICZAK B., AULEHLA-SCHOLZ C., WIECZOREK D.et al.: Distinct spectrum of CFTR gene mutations in congenital absence of the vas deferens. Hum. Genet., 1997, 100: 365–77.

    Article  CAS  PubMed  Google Scholar 

  15. DUBIN L., AMELAR R.D.: Etiological factors in 1294 consecutive cases of male infertility. Fertil. Steril., 1971, 22: 469.

    Article  CAS  PubMed  Google Scholar 

  16. DUMUR V., GERVAIS R., RIGOT J.M.et al.: Abnormal distribution of CF ΔF 508 allele in azoospermic men with congenital aplasia of epididymis and vas deferens. Lancet, 1990, 336:

  17. GAILLARD D.A., CARRE-PIGEON F., LALLEMAND A.: Normal vas deferens in fetuses with cystic fibrosis. J. Urol. 1997, 158: 1549–52.

    Article  CAS  PubMed  Google Scholar 

  18. GAN K.H., VEEZE H.J., VAN DEN OUWELAND A.M.W.et al.: A cystic fibrosis associated with mild lung disease. N. Engl. J. Med. 1995, 333: 95–9.

    Article  CAS  PubMed  Google Scholar 

  19. GIRODON E., COSTES B., CAZENEUVE C., FANEN P., GOOSSENS M.: Génétique de la mucoviscidose. Médecine Thérapeutique, 1997, 3: 431–40.512.

    Google Scholar 

  20. HOLSCLAW D.S., PERLMUTTER A.D., JOCKIN H., SHWACHMANN H.: Genital abnormalities in male patients with cystic fibrosis. J. Urol., 1971, 106: 568–74.

    CAS  PubMed  Google Scholar 

  21. JARVI K., MCCALLUM S., ZIELENSKI J.et al.: Heterogeneity of reproductive tract abnormalities in men with absence of the vas deferens: role of cystic fibrosis transmembrane conductance regulator gene mutations. Fertil. Steril., 1998, 70: 724–8.

    Article  CAS  PubMed  Google Scholar 

  22. JEQUIER A.M., ANSELL I.D., BULLIMORE N.J.: Congenital absence of the vasa deferentia presenting with infertility. J. Androl., 1985, 6: 15–9.

    CAS  PubMed  Google Scholar 

  23. KAPLAN E., SHWACHMANN H., PERLMUTTER A.D., RULE A., KHAW K.T., HOLSCLAW D.S.: Reproductive failure in males with cystic fibrosis. N. Engl. J. Med., 1968, 279: 65.

    Article  CAS  PubMed  Google Scholar 

  24. KEREM B., ROMMENS J.M., BUCHANAN J.A.et al.: Identification of the cystic fibrosis gene: genetic analysis. Science, 1989, 245: 1073–80.

    Article  CAS  PubMed  Google Scholar 

  25. LANDING B.H., WELLS T.R., WANG C.I.: Abnormality of the epididymis and vas deferens in cystic fibrosis. Arch. Pathol., 1969, 88: 569.

    CAS  PubMed  Google Scholar 

  26. MAK V., ZIELENSKI J., TSUI L.C.et al.: Proportion of cystic fibrosis gene mutations are not detected by routine testing in men with obstructive azoospermia. JAMA, 1999, 281: 2217–24.

    Article  CAS  PubMed  Google Scholar 

  27. McKUSICK V.A.: Congenital bilateral aplasia of vas deferens. In: Mendelian inheritance in man. Johns Hopkins University Press, 8th ed. Baltimore 1988: 1226.

    Google Scholar 

  28. MOREL Y., ANDRE J., URING-LAMBERT B.et al.: Rearrangements and point mutations of P450C21 genes are distinguished by five restriction endonuclease haplotypes identified by a new probing strategy in 57 families with congenital adrenal hyperplasia. J. Clin. Invest., 1989, 83: 527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. OATES R.D., AMOS J.A.: The genetic basis of congenital bilateral absence of the vas deferens and cystic fibrosis. J. Androl., 1994, 15: 1–8.

    CAS  PubMed  Google Scholar 

  30. OPPENHEIMER E.H., ESTERLY J.R.: Observations on cystic fibrosis of the pancreas. V. Developmental changes in the male genital system. J. Ped. 1969, 75: 806.

    Article  CAS  Google Scholar 

  31. RIORDAN J., ROMENS J., KEREM B.et al.: Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 1989, 245: 1066–73.

    Article  CAS  PubMed  Google Scholar 

  32. SLOMSKI R., SCHOESSER M., BERG L.P.et al.: Omission of exon 12 in cystic fibrosis transmembrane conductance regulator (CFTR) gene transcripts. Hum. Genet., 1992, 89: 615–9.

    CAS  PubMed  Google Scholar 

  33. STRONG T.V., WILKINSON D.J., MANSOURA M.K.,et al.: Expression of an abundant alternatively spliced form of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is not associated with a cAMP activated chloride conductance. Hum. Mol. Genet., 1993, 3: 151–6.

    Google Scholar 

  34. TAUSSIG L.M., LOBECK C.C., DI SANT’AGNESE P.A., ACKERMAN D.R., KATTWINKEL J.: Fertility in males with cystic fibrosis. N. Engl. J. Med., 1972, 287: 586.

    Article  CAS  PubMed  Google Scholar 

  35. TIZZANO E.F., CHITAYAT D., BUCHWALD M.: Cellspecific localization of CFTR mRNA shows developmentally regulated expression in human fetal tissues. Hum. Mol. Genet., 1993, 2: 219–22.

    Article  CAS  PubMed  Google Scholar 

  36. TIZZANO E.F., SILVER M., CHITAYAT D., BENICHOU J.C., BUCHWALD M.: Differential cellular expression of CFTR in human reproductive tissues: clues for the infertility in patients with CF. Am. J. Pathol., 1994, 144: 906–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. TREZISE A.E.O., CHAMBERS J.A., WARDLE C.J., GOULD S., HARRIS A.: Expression of the cystic fibrosis gene in human fetal tissues. Hum. Molec. Genet., 1993, 2: 213–18.

    Article  CAS  PubMed  Google Scholar 

  38. TREZISE A.E.O.et al.: CFTR expression is regulates during both the cycle of the seminiferous epithelium and the oestrous cycle of rodents. Nature Genet., 1993, 3: 157–64.

    Article  CAS  PubMed  Google Scholar 

  39. VALMAN H.B., FRANCE N.E.: The vas deferens in cystic fibrosis. Lancet, 1969, 2: 566.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, F., Bey-Omar, F., Rollet, J. et al. Absence de corrélation génotype-phénotype dans les absences de canaux déférents. Androl. 11, 21–32 (2001). https://doi.org/10.1007/BF03034392

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034392

Mots-clés

Key-words