Skip to main content
  • Androgenes et Sport
  • Published:

Utilisation illégale d’androgènes

Drug abuse for synthetic anabolic androgenic steroids

Resume

Le dopage par les androgènes est l’utilisation de substances dérivées ou apparentées à la testostérone à des fins d’amélioration de la performance sportive. Toute prise d’androgène est illégale de par la Loi du 28 Juin 89 relative au sport. Il n’existe pas, pour cette classe de substances, de justification thérapeutique possible. Le Comité Médical d’Éthique a confirmé cette décision légale en 1993.

Les moyens utilisés actuellement pour mettre en évidence cette utilisation illégale sont revus ici. En bref, le dépistage de l’utilisation illégale d’an-drogènes commence par la recherche des différents anabolisants de synthèse dans un échantillon d’urine d’un compétiteur. La seule technique utilisée et reconnue officiellement dans le cadre du dépistage du dopage est la chromatographie gazeuse couplée à la spectrométrie de masse (GC/MS).

Abstract

Drug abuse for synthetic anabolic androgenic steroids in order to ameliorate sports results is illegal since the law of june 89 in France. No exception whatsoever, therapeutical purpose(s) included, is accepted. Means for controlling such abuse are reviewed briefly here together with data from our research on epitestosterone modifications following physical exercise and testosterone undecanoate controled administration in 15 nor In France the national body responsible for doping analysis in sports is the «Laboratoire National de Dépistage du Dopage» (LNDD).

In fact, the control of drug abuse in sports requires laboratory means enabling the detection of banned substances with unlimited certainty. Briefly, untimed urine samples are analyzed for such purpose by gas (liquid or high pressure) chromatography coupled to mass spectrometry (GC/MS) which is the only technique accepted by the medical commission of I.O. C. and relevant bodies world-wide.

However, since testosterone itself can now be used as a mean of steroid abuse in man, detection has to solve new problems arising from such manipulation. After considering various approches in order to prove the offense, such as the isotopic ratio for testosterone and different urinary metabolites, and indirect technique, based on the ratio of testosterone to epitestosterone glucuronides, has proved valuable but is now questionned.

Epitestosterone is the 17α epimere of testosterone. It is not readily known to clinicians as it has no androgenic potency [5] and does not bind to the specific plasma protein TeBG (26) or androgen receptor [5, 26]. Epitestosterone was first isolated from human urines, simultaneously, by Brooks [6] and Korenman [18]. Wilson and Lipsett [30] among others demonstrated, in man, that this steroid originated both from adrenals and testis, results confirmed recently by Dehennin [8]. Dray et al. and studied its production and circadian rythm in man pointing out that epitestosterone is found in the sulphate fraction of plasma steroids and in the glucuronide fraction of urinary androgen metabolites [12, 20]. Epitestosterone is recovered as such in urines. It is not metabolized [12, 28]. However the pathway for epitestosterone biosynthesis is still uncertain today. The best (for it’s the only one!) hypothesis at present being that of Weustein et al. [30] who reported that epitestosterone could be synthesyzed in man from Δ5 androstène- 3 β, 17α-diol through a possible non enzymic modification of Δ5 androstène-3β, 17β- diol.

Donike et al. [10] showed, in man, that the mean GT/GEPIT ratio in urines was 1,5±0,9 (±SD) using epitestosterone as a marker for endogenous androgens. This added index has being implemented, as an official test for androgen abuse’s detection in sports, since the Los Angeles Olympic Games in 1982. All other parameters being normal the definition of a positive androgen doped case is based on GT/GEPIT values over 6. This value of 6 was obtained by adding 6 SD to the mean obtained in man. However, is the use of this parameter justified and 100% safe?

Some have questioned its used arguing that epitestosterone, not a well known substance, can not be reliable and could lead to false positive results. We summarize here the results of the French Research Network to which we participated.

Mathian et al. [22] showed that epitestosterone production follows testosterone production whatever the age of the subject. The ratio GT/GEPIT doesn’t vary according to age, even over puberty, it remains at 1,40±0,86 from Tanner Stade II to Tanner Stade V. It doesn’t vary significantly after exercise or with fatigue.

We also report our study of 15 young men (18–45 year old) over a year. Extensive blood (T, Δ4, DHT, DHA, SDHA, E2, TeBG, FSH, LH) and urinary parameters (GT, DHT, GEPIT, ADIOL, BDIOL) were measured before, during and after a 21 days course of testosterone undecanoate (TU). Whatever the technique used (GC/MS or RIA) results are identical. We confirmed that GT/GEPIT was very stable for each individual and could be considered as a personnal marker. After TU, at the dosage of 40 to 80 mg/day, GT/GEPIT increased significantly in all instances (athletes and sedentary subjects alike), but not permanently. This change resulted from an increase in testosterone excretion wheras epitestosterone remained non statistically changed. However at the dosage used no permanent modification was found and most of the time GT/GEPIT returned to basal values rapidly.

The analysis of the results of our study, according to the limit set by the I.O.C. at 6 for GT/GEPIT, pointed out a lot of false negative (over 50%). Values for GT excretion rate corrected with the creatinine content in the same urinary sample (GT/mg creatinine) have therefore been considered together with GT/GEPIT values. In our opinion, a more suitable and reliable index is thus obtained. The setting of a new limit at 3 for GT/GEPIT (Mean ± 3 SD) together with values under 75 ng/mg creatinine for GT is analyzed. It is also stressed that only a medical commission (aware of the significance of epitestosterone) can interpret the results obtained by analytical chemistry. This is the case in France.

Bibliographie

  1. ACEVEDO H.F., CORRAL GALLARDO J.: Epitestosterone: anin-vitro metabolite of Δ 4-androstenedione in a sclerotic ovary. J. Clin. Endoc., 1965, 25: 1675–1676.

    CAS  Google Scholar 

  2. BEAULIEU E.E., CORPECHOT C., DRAY F., EMILIOZZO R., LEBEAU M.C., MAUVAIS-JARVIS P. and ROBEL P.: An adrenal-secreted «androgen»: Dehydroepiandrosterone sulfate. Its metabolism and a tentative generalization on the metabolism of other steroid conjugates in man. Recent Prog. Hormone Res., 1984, 40: 411–501.

    Google Scholar 

  3. BINGHAM S.A. and CUMMINGS J.H.: The Use of Creatinine output as a check on the completness of 24 hour urine collections. Human. Nutr. Clin. Nutr., 1985, 39: 343–353.

    CAS  Google Scholar 

  4. BLAQUIUER J., DORFMAN R.I. and FORCHIELLI E.: Formation of epitestosterone by human blood and adrenal tissue. Acta Endocrinol., 1967, 54: 208–214.

    Google Scholar 

  5. BONNE C., RAYNAUD J.P.: Methyltrienolone, a specific ligand for cellular androgen receptors. Steroids, 1975, 26: 227–232.

    Article  PubMed  CAS  Google Scholar 

  6. BROOKS R.V. and GIULIANI G.: Epitestosterone: Isolation from Human urine and experiments on possible precursors. Steroids, 1964, 1: 101–116.

    Article  Google Scholar 

  7. CATLIN H. and HATTON C.K.: Use and Abuse of anabolic and other drugs for athletic enhancement. Adv. Int. Med., 1991, 36: 399–424.

    CAS  Google Scholar 

  8. DEHENNIN L.: Secretion by the human testis of epitestosterone with its sulfoconjugate and precursor androgen Δ5 androstene −3β, 17 α-diol. J. Steroid Bioch. Molec. Biol., 1993, 44: 171–177.

    Article  CAS  Google Scholar 

  9. De LIGNIERES B., PLAS J.-N., COMMANDRE F., MORVILLE R., VIANI J.-L., PLAS F.: Sécrétion testiculaire d’androgènes après effort physique prolongé chez l’homme. Nelle Presse Méd., 1976, 5: 2060–2063.

    Google Scholar 

  10. DONIKE M., GEYER H., KRAFT M. and RAUTH S.: Long term influence of anabolic steroids on the steroid profile. Int. J. Sports Med., 1988, 9: 401.

    Google Scholar 

  11. DONIKE M., GEYER H., GOTZMANN A., MAREK-ENGELKE U., RAUTH S.: Dope analysis. 10th Cologne Workshop on Dope Analysis 7th to 12th June 1992. Proceedings Sport und Buch Strauß Edition Sport-Köln 1993.

  12. DRAY F. et LEDRU M. J.: Métabolisme de l’épitestostérone. Absence d’interconversion périphérique de l’épitestostérone et de la testostérone et existence d’une production de sulfate d’épitestostérone chez l’homme adulte normal. C. R. Acad. Sc. Paris, 1966, 262: 679–681.

    CAS  Google Scholar 

  13. HEYMSFIELD S.B., ARTEAGA C., Mc MANUS C., SMITH J. and MOFFITT S.: Measurement of muscle mass in humans: Validity of the 24 hour urinary creatinine method. Am. J. Clin. Nutr., 1983, 37: 478–494.

    PubMed  CAS  Google Scholar 

  14. HORST H.J., HOLTJE M., DENNIS M., COERT A., GEELEN J. and VOIGT K.: Lymphatic absorption and metabolism of orally administred testosterone undecanoate in man. Klin. Worchenschr, 1976, 54: 875–879.

    Article  CAS  Google Scholar 

  15. JAFFE R.B., PAYNE A.H.: Gonadal steroid sulfates and sulfatases. IV. Comparative studies on steroid sulfokinase in the human fetal testis and adrenal. J. Clin. Endocrinol. Metab., 1971, 33: 592–596.

    PubMed  CAS  Google Scholar 

  16. KAWASAKI T., UEZONO K., ITOH K. and UENO M. Prediction of 24 hour urinary creatinine excretion from age, body weight and height of an individual and its application. Nippon. Koshu. Eisei. Zasshi, 1991, 38: 567–574.

    PubMed  CAS  Google Scholar 

  17. KOCHAKIAN C.D. and STEDWORTHY G.: Metabolism of Δ4-Androstene-3, 17-dione by tissue homogenates. J. Biol. Chem., 1954, 210: 933–935.

    PubMed  CAS  Google Scholar 

  18. KORENMAN S.G., WILSON H. and LISETT M.B.: Isolation of 17α Hydroxyandrost-Δ4-en, 3-one (Epitestosterone) from Human Urine. J. Biol. Chem., 1964, 239: 1004–1006.

    PubMed  CAS  Google Scholar 

  19. KUTTENN F.: L’hirsutisme. Monographie, Flammarion, 1990

  20. LAGOGUYE M., DRAY F., CHAUFFOURNIER J.M. et REINBERG A.: Etude des rythmes circadiens et circannuels des glucuronides de testostérone et d’ épitestostérone chez l’ homme adulte sain. C. R. Acad. Sc. Paris, 1972, 274: 3435–3437.

    Google Scholar 

  21. MAHOUDEAU J.A., DROSDOWSKY M.A. et JAYLE M.F.: Dosage de la testostérone et de l’épitestostérone urinaires dans l’hypogonadisme mâle et dans l’hirsutisme. Ann. Endocrinol., 1970, 31: 585–597.

    CAS  Google Scholar 

  22. MATHIAN B., FERRET J.M., PATRICOT M.C., D’ALEO PH. and REVOL, A: Influence de l’entraînement de l’adolescent footballeur sur la valeur du rapport Testostérone/Epitestostérone dans l’urine au moment du contrôle antidopage. Sport Med., 1992, 43: 18–21.

    Google Scholar 

  23. MAUVAIS-JARVIS P., CHARRANSOL G. and BOBAS-MASSON F.: Simultaneous determination of urinary androstanediol and testosterone as an evaluation of human androgenicity. J. Clin. Endocrinol. Metab., 1973, 36: 452–459.

    Article  PubMed  CAS  Google Scholar 

  24. MAUVAIS-JARVIS P.: Medicine de la reproduction masculine. Edité par SCHAISON G., BOUCHARD P., MAHOUDEAU J., LABRIE F. Flammarion, Medecine-Sciences, Presses de l’Université de Montréal. 1984.

  25. PAL S.B.: Urinary excretion of testosterone and epitestosterone in men, women and children, in health and disease. Clin. Chim. Acta, 1971, 33: 215–227.

    Article  PubMed  CAS  Google Scholar 

  26. RAYNAUD J.P., AZADIAN-BOULANGER G., BONNE C., PERRONNET J. and SAKIZ E.: Present trends in antiandrogen research. Androgens and Antiandrogens, pp 281–293, edited by Martini M. and Motta M;, Raven Press, New York, 1977.

    Google Scholar 

  27. SZAMATOWICZ M., DROSDOWSKY, M.A. and JAYLE M.F.: The role of testosterone and androstenedione as precursors of epitestosterone in guinea pigs (in vivo andin vitro studies). Acta Endocrinol. 1971, 67: 187–196.

    PubMed  CAS  Google Scholar 

  28. TAMM J., VOLKWEIN U. and STARCEVIC Z.: The urinary excretion of epitestosterone, testosterone and androstenedione following intravenous infusions of high doses of these steroids in human subjects. Steroids, 1966, 8: 659–669.

    Article  PubMed  CAS  Google Scholar 

  29. VERMUELEN A.: From methyltestosterone to testosterone undecanoate. Science Ser. Int., 1989, 55–58.

  30. WEUSTEN J.J.A.M., LEGEMAAT G., VAN DER WOUW M.P.M.E., SMALS A.G.H., KLOPEN-BORG P.W.C. and BENRAAD T.J.: The mechanism of the synthesis of 16-androstenes in human testicular homogenates. J Steroid Biochem., 1989, 32: 689–694.

    Article  PubMed  CAS  Google Scholar 

  31. WILSON H. and LIPSETT M.B.: Metabolism of Epitestosterone in Man. J. Clin. Endocr., 1966, 26: 902–914.

    PubMed  CAS  Google Scholar 

  32. WILSON J.D.: Androgen Abuse by Athletes. Endocrin. Reviews, 1988, 9: 181–199.

    Article  CAS  Google Scholar 

  33. WRIGHT F., MOWSZOWICZ F. and MAUVAIS-JARVIS P.: Urinary 5a androstane −3α, 17β- diol radioimmunoassay: A new clinical evaluation. J. Clin. Endocrinol. Metab., 1978, 47: 850–854.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Le travail de recherche présenté ici a été subventionné par le «Ministère Jeunesse et Sport», «Cellule Vie de l’Athlète» Conventions 91–94.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, F., Godefroy, E., Bongini, M. et al. Utilisation illégale d’androgènes. Androl. 5, 347–360 (1995). https://doi.org/10.1007/BF03034340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034340

Mots-clés

Key words