Skip to main content
  • Andrologie Psychosomatique
  • Published:

Stress et Spermatogénèse

Stress and spermatogenesis

Resume

Le stress, dont le point de départ est cérébral, peut agir sur la spermatogénèse par les voies hormonale ou nerveuse. La voie hormonale aboutit à une baisse de production de LHRH, à une chute des récepteurs à LH des cellules de Leydig et à une diminution de l’activité enzymatique 17α hydroxylase. Ainsi, en cas de stress important et prolongé, la sécrétion de testostérone diminue et la spermatogénèse peut en être affectée. La question de l’influence des stress de faible intensité reste posée.

La voie nerveuse comporte des fibres effectrices à catécholamines qui innervent les différentes parties du testicule. La destruction expérimentale de ces voies entraîne une régression de l’épithélium séminal. En outre, la destruction expérimentale du néocortex antérieur, chez le rat, provoque des altérations de la spermatogénèse. Les étages les plus élevés de la sphère nerveuse pourraient donc participer au contrôle de l’épithélium germinal.

On peut cependant faire l’hypothèse que c’est lorsque la production spermatique est basse qu’un stress momentané peut, en aggravant la situation, devenir nocif. Ainsi, l’impact du stress ou des facteurs psychiques sur la spermatogénèse pourrait n’être que relatif.

Abstract

Stress, which originates in the brain, can influence spermatogenesis hormonally or via the nervous system. The hormonal route commences with the central secretion of Corticotrophin-Releasing Factor, leading to a fall in LHRH production, a decrease in Leydig cell LH receptors and a decrease in 17 a hydroxylase activity. Thus, in the case of major, prolonged stress, testosterone secretion falls, which in turn affects spermatogenesis. However, given that the testosterone threshold required for normal seminiferous epithelium function is significantly less than the mean circulating level of this hormone, the importance of low intensity stress remains unknown.

The nervous route involves catecholaminergic fibres which, in the testis, innervate the Highmore corpus, the vessels, the area adjacent to the Leydig cells, and the basement membrane of seminiferous tubules. The experimental destruction of these fibres leads a regression of the seminiferous epithelium. Moreover, the experimental ablation of the rat anterior neocortex leads to changes in spermatogenesis. Therefore, given that the endocrine system does not seem to be involved in these changes, these results indicate that the highest level of the nervous system may participate in the controlling the germinal epithelium which, all things considered, would tend to support psychosomatic influences.

However, given that the number of spermatozoa varies significantly between ejaculate and independantly of the level of testosterone secretion necessary for normal spermatogenesis, it may be hypothesized that it is only when sperm production is low that temporary stress, in aggravating the situation, becomes deleterious to spermatogenesis. Since, under normal conditions, such periods are short, the role of the influence of stress on spermatogenesis can only be relative. Nevertheless, if variations occur during permanently low sperm production, the likelihood of negative effects is increased. Consequently, the impact of stress or psychological factors on spermatogenesis might well depend upon particular circumstances.

References

  1. Almeida OFX., Nikolorakis KE., Herz A.: Evidence for the involvement of endogenous opioids in the inhibition of luteinizing hormone by corticotropin-releasing factor. Endocrinology, 1988, 122, 1034–1041.

    PubMed  CAS  Google Scholar 

  2. Auger J., Czyglik F., Kunstmann JM., Jouannet P.: Significant decrease of semen characteristics of fertile men from the Paris area during last 20 years. Hum. Reprod., 1994, 9, Suppl. 4, 175.

    Google Scholar 

  3. Bentz H.: Psychology of male infertility: a literature survey. Int. J. Androl. 1985, 8, 325–336.

    Article  Google Scholar 

  4. Cannon WB.: Traumatic shock, 1 vol, Appleton, New York, 1923.

    Google Scholar 

  5. Carlsen E., Giwercman A., Keiding N., Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. Brit. Med. J., 1992, 305, 609–613.

    PubMed  CAS  Google Scholar 

  6. Chowdhury AK., Tcholakian RK.: Effects of various doses of testosterone propionate on intratesticular and plasma testosterone levels and maintenance of spermatogenesis in adult hypophysectomised rats. Steroids, 1979, 34, 151–162.

    Article  PubMed  CAS  Google Scholar 

  7. Cockett ATK., Elbadawi A., Zemjanis R., Adey WR.: The effects of immobilization on spermatogenesis in subhuman primates. Fertil. Steril. 1970, 21, 610–614.

    PubMed  CAS  Google Scholar 

  8. Coujard: Le facteur nerveux périphérique. Les incidences sur la spermatogénèse, in “La fonction spermatogénétique du testicule humain”. Masson ed., Paris, 1958, 91–105.

    Google Scholar 

  9. Cunningham GR., Huckins C.: Persistence of complete spermatogenesis in the presence of low intratesticular concentrations of testosterone. Endocrinology, 1979, 105, 177–186.

    PubMed  CAS  Google Scholar 

  10. Czyba JC., Clement JL.: Evaluation des facteurs psychogènes dans l’infertilité masculine. Les colloques de l’Inserm: Facteurs de la fertilité humaine. A. SPIRA, P. JOUANNET Eds. Inserm, 1981, 103, pp 453–460.

  11. Deslypere JP., Vermeulen A.: Leydig cell function in normal men: effect of age, life style, residence, diet and activity. J. Clin. Endocrinol. Metab. 1984, 59, 955–962.

    PubMed  CAS  Google Scholar 

  12. Dufau ML., Ulisse S., Khanum A., Buckzo E., Kitamura M., Fabbri A., Namiki M.: LH action in the Leydig cell: modulation by angiotensin II and corticotropin releasing hormone and regulation of p 450 17 a m RNA. J. Steroid Biochem., 1989, 34, 205–217.

    Article  PubMed  CAS  Google Scholar 

  13. Doerr P., Pirke KM.: Cortisol-induced suppression of plasma testosterone in normal adult males. J. Clin. Endocrinol. Metab., 1976, 43, 622–629.

    PubMed  CAS  Google Scholar 

  14. Dunbar R.: Stress as a good contraceptive. New Scientist, 1985, 17, 16–18.

    Google Scholar 

  15. Foucault P., Carreau S., Kuczinsky W., Guillaumin JM., Bardos P., Drosdowski MA.: Human Sertoli cells in vitro. Lactate, estradiol — 17ß and transferin production. J. Androl., 1992, 13, 361–367.

    PubMed  CAS  Google Scholar 

  16. Gray GD., Smith ER., Damassa DA., Ehrenkranz JR., Davidson JM: Neuroendocrine mechanisms mediating the suppression of circulating testosterone levels associated with chronic stress in male rats. Neuroendocrinology, 1978, 25, 247–256.

    Article  PubMed  CAS  Google Scholar 

  17. Harrisson KL., Callan VJ., Hennessey JF.: Stress and semen quality in an in vitro fertilization program. Fertil. Steril., 1987, 48, 633–636.

    Google Scholar 

  18. Hodson M.: The nerves of the testis, epididymis ans scrotum in testis, development, anatomy and physiology, Johnson and Vandemarked eds. Acad. Press., 1970, London 47–99.

    Google Scholar 

  19. Lopez-Calderon A., Ariznavaretta C., Gonzales-Quijano MI., Tresguerres JA., Calderon MD.: Stress induced changes in testis function. J. Steroid. Biochem. Molec. Biol. 1991, 40, 473–479.

    Article  PubMed  CAS  Google Scholar 

  20. Marley E.: Release of an adrenalin-like substance by electrical stimulation of the brain stem. In Ciba symposium on adrenergic mechanism JR. VANE Ed. Churchill, Londres 1960, 424–431.

    Google Scholar 

  21. Marshall GR., Wickings EJ., Luedecke DK., Nieschlag E.: Stimulation of spermatogenesis in stalk-sectioned rhesus monkeys by testosterone alone. J. Clin. Endocrinol. Metab., 1983, 57, 152–159.

    PubMed  CAS  Google Scholar 

  22. Marshall GR., Wickings EJ., Nieschlag E.: Testosterone initiate spermatogenesis in an immature non human primate, Macaca fascicularis. Endocrinology, 1984, 114, 2228–2233.

    PubMed  CAS  Google Scholar 

  23. McGrady AV: Effects of psychological stress on male reproduction: a review. Arch. Androl., 1984, 13, 1–7.

    Article  PubMed  CAS  Google Scholar 

  24. Moghissi KS., Wallach EE.: Unexplained infertility. Fertil. Steril. 1983, 39, 5–21.

    PubMed  CAS  Google Scholar 

  25. Nikolorakis KE., Almeida OF., Hertz A.: Stimulation of hypothalamic β endorphin and dynorphin release by corticotropin-releasing factor (in vitro). Brain Res., 1986, 399, 152–155.

    Article  Google Scholar 

  26. O’Steen WK.: Sertonin and Histamine: Effect of a single injection on the mouse testis and prostate Gland. Proc. Soc. Exp. Biol. Med., 1963, 113, 161–163.

    Google Scholar 

  27. Palti Z.: Psychogenic male infertility. Psychosom Med. 1969, 31, 326–330.

    PubMed  CAS  Google Scholar 

  28. Paulsen CA.: In: Who laboratory manual for the examination of human semen and semen cervical mucus interaction. World Health Organisation, Cambridge University Press, Cambridge, 1987, p 3.

    Google Scholar 

  29. Plotsky P., Vale W.: Hemmorrhage-induced secretion of corticotropin releasing factor like immunoreactivity into the rat hypophysial portal circulation and its inhibition by glucocorticoids. Endocrinology, 1984, 114, 164–169.

    PubMed  CAS  Google Scholar 

  30. Schwartz D.: Variations physiologiques du sperme. Rev. Prat., Paris, 1983, 33, 3109–3114.

    CAS  Google Scholar 

  31. Soulairac A., Soulairac ML.: Le contrôle nerveux de la spermatogénèse. Path. Biol., 1963, 11, 1210–1213.

    CAS  Google Scholar 

  32. Soulairac A., Soulairac ML.: Contrôle nerveux central extra hypophysaire de la fonction testiculaire. Acta Endoc., 1967, 8, 37–47.

    Google Scholar 

  33. Steeno OP., Pangkahila A.: Occupational influences on male fertility and sexuality. Andrologia 1984, 16, 5–22.

    Article  PubMed  CAS  Google Scholar 

  34. Stieve H.: Der Einfluss des nevensystems ouf bau und tatigkect der geschlechtsorgane des menschen. Stuttgart, Thieme, 1952. Cité in HARRISSON and al. 1987.

    Google Scholar 

  35. Suter DE., Schwartz NB.: Effects of glucocorticoïds on secretion of luteinizing hormone and follicle stimulating hormone by female rat pituitary cells in vitro. Endocrinology, 1985, 117, 849–854.

    Article  PubMed  CAS  Google Scholar 

  36. Urry RL., Dougherty KA., Ellis LC.: Alterations with age in rat seminiferous tubule monoamine oxidase activity when compared with whole testicular tissue (38636). Proc. Soc. Exp. Biol. Med., 1975, 148, 805–807.

    CAS  Google Scholar 

  37. Wang C., Chan Y., Yeung RT.: Effect of surgical stress on pituitary testicular function. Clin. Endocrinol (Oxf.) 1978, 9, 255–266.

    Article  CAS  Google Scholar 

  38. Welsh TH., Bambino TH., Hsueh AJW. Mechanism of glucocorticoïd induced suppression of testicular androgen biosynthesis in vitro. Biol. Reprod., 1982, 27, 1138–1146.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auroux, M. Stress et Spermatogénèse. Androl. 5, 55–61 (1995). https://doi.org/10.1007/BF03034304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034304

Mots clés

Key-Words