- Mouvements du Spermatozoide et Analyse Automatisée
- Published:
Bases moléculaires du mouvement flagellaire
Molecular basis of axonemal movement
Andrologie volume 5, pages 15–30 (1995)
Resume
Au cours de l’évolution, pour pouvoir se déplacer dans le milieu qui les entoure, les cellules ont développé des structures spécialisées: les cils et les flagelles. Ces structures qui produisent des successions d’ondes symétriques ou asymétriques, contiennent la même “machinerie” interne, l’axonème.
L’axonème est composé généralement de neuf doublets de microtubules externes entourant une paire centrale de microtubules. Le battement résulte d’un phénomène actif, dû à l’attachement temporaire des dynéine-ATPases d’un doublet externe au doublet adjacent. II se produit alors un glissement entre les doublets qui est transformé en courbure par les résistances de certaines structures axonémale. Les mécanismes moléculaires impliqués dans la génération du vouvement sont les même dans les cils et les flagelles, bien que les voies de contrôle de ces mécanismes puissent être différents.
Cette revue se présente en deux parties: la première est un rappel sur la composition de l’axonème incluant les récentes découvertes aux niveaux ultrastructural et biochimique, la seconde porte sur la mécanique du battement axonémal et présente le rôle de certaines des structures ou des protéines dans la génération du battement.
Abstract
Because of their small size, cells encounter fundamentally different physical constraints when they want to move in their surrounding media than when aquatic animals want to move in water. For cells, external viscosity is the main resistance while inertia plays almost no role; then in order to move, cells will have to produce continually a force against the viscous media. During the evolution, eukaryotic cells have gained specialised structures to efficiently propel them: cilia and flagella. These thread-like appendages produce repetitive beating which consists in propagation of waves from the bottom to the tip of these structures. Cilia generally show an asymmetrical beating while flagella have a more symmetrical bend propagation. Cilia and flagella contain an almost identical internal complex machinery: the axoneme. As a consequence, the mechanisms involved in the generation of the movement are identical although the precise regulation may be different.
In this paper, the reader will find a review of the molecular organisation of the ciliary and flagellar axoneme and of the role played by some of the constituting elements on the generation of the movement.
References
AFZELUIS B.A. Int. Rev. Exp. Pathology 19: 1–43, 1979.
Afzeluis B.A., Bellon P.L., Lanzavecchia S. etDallai R.: In: Comparative Spermatology 20 Years After: The Axoneme Studied by Computeraided analysis, B. Baccetti ed., Serono Symposia, vol. 75, Raven Press New York. 315–319, 1991.
Asai D.J., Beckwith S.M., Kandl K.A., Keating H.H., Tjandra H., etForney J.D.: J. Cell. Sci. 107: 839–847, (1994).
Baccetti B.: In: Biology of Fertilization, Vol. 2: Evolution of the Sperm Cell, C.B. Metz, and A. Monroy eds. Academic Press: New York, 1–58, (1985).
Baccetti B., Burrini A.G., Pallini V., etRenieri T.: J. Cell Biol. 88: 102–107. 1980.
Barkalow K., Avolio J, Holwill M.E.J., Hamasaki T., etSatir P. (1994): Cell. Motil. Cytoskel. 27: 299–312.
Bedford J.M., etHoskins D.D.: In: Marshall’s Physiology of Reproduction, vol. 2: The Mammalian Spermatozoon, G.E. Lamming ed. Churchill Livingstone, London. 379–569, 1990.
Bell C.W., Fronk E., etGibbons I.R.: J. Supramol. Struct. 11: 311–317, 1979.
Berstein M., Beech P.L., Gatz S.G., etRosenbaum J.L.: J. Cell. Biol. 125: 1113–1326, 1994.
Bozkurt H.H., etWoolley D.M.: Cell Motil. Cytoskel., 24: 109–118. 1993.
Bray D.: Cell Movements. Garland Publishing, New York. 1992.
Brokaw C.J.: In: Cell Movement, Vol. 1: Operation and Regulation of the Flagellar Oscillator, F.D. Warner, P. Satir, et I.R. Gibbons eds: Alan R. Liss, New York. 121–140, 1989a
Brokaw C.J.: Science 243:1593–1596, 1989b.
Brokaw C.J.: Cell. Motil. Cytoskel. 28: 199–204, 1994.
Burfeind, P., etHoyer-Fender, S.: Dev. Biol. 148: 195–204. 1991.
Burns R.G., etSurridge C.D. In: Microtubules: Tubulin: Conservation and Structure, J.S. Hyams, et C.W. Lloyd, eds. Wiley-Liss, New York. 3–32, 1994.
Carrera A., Gerton G.L., etMoss S.B.: Dev. Biol. 165: 272–284, 1994.
Chilcote T.J., etJohnson K.A.: J. Biol. Chem. 265: 17257–17266, 1990.
Cosson, J Biol. Cell, 76: 319–327, 1992.
Curry A.M., Williams B.D., etRosembaum J.L.: Mol. Cell. Biol. 12: 3967–3977, 1992.
Deiner D.R., Ang L.H., etRosembaum J.L.: J. Cell. Biol., 123: 183–190, 1993.
Dey C.S., etBrokaw C.J.: J. Cell. Sci., 100: 815–824, 1991.
Feneux D., Serres C., etJouannet P.: Fertil. Steril. 44: 508–511, 1985.
Fox L.A., etSale W.F.: J. Cell. Biol. 105:1781–1787, 1987.
Fox L.A., Sawin K.E., etSale W.F.: J. Cell. Sci. 107:1545–1550, 1994.
Gatti J.-L., King S.M., Moss A.G., etWitman G.B. J. Biol. Chem. 264: 11450–11457, 1989.
Gatti J.-L., King S.M., etWitman G.B.: In: Comparative Spermatology 20 Years After: The ATPases of Chlamydomonas Outer Arm Dynein Differ in Their pH and Cationic Requirements, B. Baccetti ed., Serono Symposia, vol 75, Raven Press, New York. 373–375, 1991.
Gepner J., etHays T.S.: Proc. Natl. Acad. Sci. USA, 90: 11132–11136, 1993.
Gibbons B.H., etGibbons I.R.: J. Cell Sci. 13: 337–357, 1973.
Gibbons B.H., Gibbons I.R, etBaccetti B.: J. Submicrosc. Cytol. 15: 15–20, 1983.
Gibbons B.H., Gibbons I.R., Mocz G., etAsai D.J.: Nature 352: 640–643, 1991.
Gibbons I.R., Asai D.J., Tang W-J.Y., etGibbons B.H.: Biol. Cell 76: 303–309, 1992.
Goodenough U.W., etHeuser J.E.: In: Cell Movement Vol. 1: Structure of the Soluble and In-Situ Ciliary Dyneins Visualized by Quick-Freeze Deep-Etch microscopy, F.D. Warner, P. Satir, et I.R. Gibbons eds. Alan R. Liss, New York. 121–140, 1989.
Greer K., etRosenbaum, J.L.: In: Cell Movement, Vol. 2: Post-translational Modifications of Tubulin, F.D. Warner, et J.R. MacIntoch eds. Alan R. Liss, New York. 47–66, 1989.
Hamasaki T., Barkalow K., Richmond J., etSatir P.: Proc. Natl. Acad. Sci. USA 88: 7978–7922. 1991.
Henkel, R., Stalf T., Mertens, N., Miska, W., etSchill, W.-B.: Int. J. Androl. 17: 68–73, 1994.
Holwill M.E.: In: Cell Movement, Vol. 1: Biophysical Properties of the Sliding Filement Mechanism, F.D. Warner, P. Satir, et I.R. Gibbons eds. Alan R. Liss, New York. 61–75, 1989.
Horst C.J., etWitman G.B.: J. Cell. Biol. 120: 733–741, 1993.
Huang B., Ramanis Z., Piperno G., etLuck D.J.L.: J. Cell. Biol. 88: 80–88, 1981.
Ishijima S., Sekiguchi K., etHiramoto Y.: Cell. Motil. Cytoskel. 9: 264–270, 1988.
Johnson K.A., etWall J.S.: J. Cell. Biol. 96: 669–678, 1983.
Johnson K.A., Haas M.A., etRosenbaum J.L.: J. Cell. Sci. 107: 1551–1556, 1994.
Jouannet P., Escalier D., Serres C., etDavid G.: J. Submicrosc. Cytol. 15: 67–71, 1983.
Kagami O., etKamiya R.: Eur. J. Biochem. 187: 441–446, 1990.
Kagami O., etKamiya R.: J. Cell. Sci. 103: 653–664, 1992.
Kamiya, R., etHasegawa, E.: Exp. Cell Res. 173: 229–304, 1987.
Kamiya R., Kurimoto E., Sakakibara H., etOkagaki T.: In Cell Movement, Vol. 1: A Genetic Approach to the Function of Inner and Outer Arm Dyneins, F.D. Warner, P. Satir, et I.R. Gibbons eds. Alan R. Liss, New York. 209–218, 1989.
Kamiya R., Kurimoto E., etMuto E.: J. Cell. Biol. 112: 441–447, 1991.
King S.M., etWitman G.B.: In: Cell Movement, Vol. 1: Molecular Structure of Chlamydomonas Outer Arm Dyneins, F.D. Warner, P. Satir, et I.R. Gibbons eds. Alan R. Liss, New York, 61–75, 1989.
King S.M., Gatti J.-L., Moss A.G., etWitman G.B.: Cell Motil. Cytoskel. 16: 266–278, 1990.
King S.M., Wilkerson C.G., etWitman G.B.: J. Biol. Chem. 266: 8401–8407, 1990.
King S.M., etWitman G.B.: J. Biol. Chem. 269: 5452–5457, 1994.
Kurimoto E., etKamiya R.: Cell Motil. Cytoskel. 19: 275–281, 1991.
Lieberman S.J., Wasco W., Macleod J., Paupard M.-C. etOrr G.A.: J. Cell. Biol. 107: 1809–1816, 1988.
Lindemann C.B., etKanous K.S.: Arch. Androl. 23: 1–22, 1990.
Lindemann C.B., Orlando A., etKanous K.S.: J. Cell Sci. 102: 249–260, 1992.
Lindemann C.B.: Cell Motil. Cytoskel. 29: 141–154, 1994.
Luck, D.J.L.: J. Cell. Biol. 98: 789–794, 1984.
Marchese-Ragona S.P., etJohnson K.A.: Electron Microsc. Rev. 1: 141–153, 1988.
Mastronarde D.N., O’Toole E.T., McDonald K.L., McIntoch J.R., etPorter M.E.: J. Cell. Biol. 118: 1145–1162, 1992.
Mendelkow E., etMendelkow E.M.: Curr. Opin. Struct. Biol. 4: 171–179, 1994.
Merlino G.T., Stahle C., Linton R., Mahon K.A., etWillingham M.C.: Genes & Dev. 5: 1395–1406, 1991.
Mitchell D.R., etRosenbaum J.L.: J. Cell. Biol. 100: 1228–1234, 1985.
Mitchell D.R, etRosenbaum J.L.: Cell Motil. Cytoskel. 6: 510–520, 1986.
Mitchell D.R., etKang Y.: J. Cell. Biol. 113: 835–842, 1991.
Mitchell D.R., etKang Y.: J. Cell. Sci. 105: 1069–1078, 1993.
Mitchell D.R., etBrown K.S.: J. Cell. Sci., 107: 635–644, 1994.
Moss A.G., Gatti J.-L., etWitman G.B.: J. Cell. Biol. 118: 1177–1188, 1992 (a).
Moss A.G., Sale W.S., Fox L.A., etWitman G.B.: J. Cell. Biol. 118: 1189–1200, 1992 (b).
Multigner L., Gagnon J., Van Dorsselaer A. etJob D.: Nature 360: 33–39, 1992.
Muto E., Kamiya R., etTsukita S.: J. Cell Sci., 99: 57–66, 1991.
Norrander J.M., etLink R.W.: In: Microtubules: Tektins, J.S. Hyams et Lloyd C.W. eds. Wiley-Liss, New York. p 201–220 1994
Ogawa K.: Nature, 352: 643–645, 1991.
Olson G.E. In: The Spermatozoon: Isolation of the Fibrous Sheath and Perforatorium of Rat Spermatozoa, D.W. Fawcett et J.M. Bedford eds, Urban-Schwarzenberg, Baltimore, p 395–400, 1979
Omoto C.K., etWitman G.B.: Nature 288: 708–710 1981.
Otter T.: In: Cell Movement, Vol. 1: Calmodulin and the Control of Flagellar Movement, F.D. Warner, P. Satir, et I.R. Gibbons eds. Alan R. Liss, New York. p 281–298, 1989
Paschal B.M., Mikami A., Pfister K.K., etVallee R.B.: J. Cell. Biol. 118: 1133–1143, 1992.
Paturle-Lafanechere L., Manier M., Trigault N., Pirollet F., Mazarguil H., etJob D: J. Cell Sci. 107: 1529–1543, 1994.
Peirera A., etGoldstein L.S.B.: In: Microtubules: The Kinesin Superfamily, J.S. Hyams et Lloyd C.W. eds. Wiley-Liss, New York. p 229–249, 1994.
Pilder S.H., Olds-Clarke P., Phillips D.M., etSilver L.M.: Dev. Biol. 159: 631–642, 1993.
Piperno G.: Cell Motil. Cytoskel. 17: 147–149, 1990.
Piperno G., etLuck, D.J.L.: J. Biol. Chem., 254: 2187–219, 1990.
Piperno G., Ramanis, Z., Smith, E.F., etSale, W.S.: J. Cell. Biol. 110: 379–389, 1990.
Piperno G., etRamanis Z.: J. Cell. Biol. 112: 701–709, 1991.
Piperno G., Mead C., LeDizet M., etMoscatelli A.: J. Cell. Biol. 125: 1109–1117, 1994.
Porter M.E., etJohnson K.A.: J. Biol. Chem. 258: 6575–658, 1983.
Porter M.E., Power J., etDutcher S.K.: J. Cell. Biol. 118: 1163–1176, 1992.
Porter, M.E., Knott, J.A., Gardner, L.C., Mitchell, D.R., etDutcher S.K.: J. Cell. Biol. 126, 1495–1507, 1994.
Sakakibara H., Mitchell D.R., etKamiya R.: J. Cell. Biol. 113: 615–622, 1991.
Sakakibara H., Takada S., King S.M., Witman G.B. etKamiya R.: J. Cell. Biol. 122: 653–661 1993.
Sale W.S.: J. Cell. Biol. 102: 2042–2052, 1986.
Sale W.S., Fox L.A., etMilgram S.L.: In: Cell Movement, Vol. 1: Composition and Organization of the Inner Row Dynein Arms, F.D. Warner, P. Satir, et I.R. Gibbons eds. Alan R. Liss, New York. p 89–102, 1989.
Satir P.: Comp. Biochem. Phys. 94A: 351–357, 1989.
Serres C., Feneux D., etJouannet P.: Cell Motil. Cytoskel. 6: 68–76, 1986.
Smith, E.F., etSale, W.S. (1991): Cell Motil. Cytoskel., 18: 258–268.
Smith E.F., etSale W.S: Science 257:1557–1559, 1992.
Smith E.F., etSale W.S.: In: Microtubules: Mechanisms of Flagellar Movement, J.S. HYAMS et C.W. LLOYD eds, WILEY-LISS, New York. p 381–392, 1994.
STEPHENS R.E.: In: Molecules and Cell Movement: Structural Chemistry of the Axoneme, S. INOUE et R.E. STEPHENS eds, RAVEN Press, New York. p 181–206, 1975.
Stephens R.E., etPrior G.: J. Cell. Sci. 103: 999–1012, 1992.
Tadaka S, etKamiya, R.: J. Cell. Biol., 126: 737–745, 1994.
Tamm S.L., etTerasaki M.: J. Cell. Biol. 125: 1127–1135, 1994.
Tang W.-J.Y., Bell C.W., Sale W.S. etGibbons I.R.: J. Biol. Chem. 262: 17728–17734, 1982.
Vale R., etToyoshima Y.Y.: Cell 52: 459–469, 1988.
Vale R., etToyoshima Y.Y.: J. Cell Biol. 108: 2327–2334, 1989.
Vera J.C., Brito M., Zuvic T., etBurzio L.O.: J. Biol. Chem. 259: 5970–5977, 1984.
Wada S., Okuno M., Nakamura K.-I., etMohri H.: Biol. Cell 76, 311–317, 1992.
Walczak C.E. etNelson D.L.: J. Cell. Sci. 106: 1369–1376, 1993.
Walther Z., Vashishtha M., etHall J.L.: J. Cell. Biol.126: 175–188, 1994.
Wilkerson C.G., King S.M., etWitman G.B.: J. Cell Sci. 107: 497–506, 1994.
Williams B.D., Curry A.M., etRosembaum J.L.: J. Cell. Biol. 109: 235–245, 1989.
Witman G.B.: In: Cell Movement, Vol. 1: Composition and Molecular Organization of the Dyneins, F.D. Warner, P. Satir, et I.R. Gibbons eds. Alan R. Liss, New York. p 25–35, 1989.
Witman G.B.: In: Ciliary and Flagellar Membranes: Introduction to Cilia and Flagella, R.A. BLOODGOOD ed. PLENUM PRESS, New York. p 1–30, 1990.
Witman G.B., Plummer J., etSander, G.: J. Cell. Biol. 76: 729–747, 1978.
Witman G.B., Wilkerson C.G., etKing S.M.: In: Microtubules: The Biochemistry, Genetics, and Molecular Biology of Flagellar dynein, J.S. HYAMS et C.W. LLOYD eds, WILEY-LISS, New York. Wiley-Liss New York. p 229–249, 1994.
Yokota E., etMabuchi I.: J. Cell Sci. 107: 345–351, 1994.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gatti, JL., Dacheux, JL. Bases moléculaires du mouvement flagellaire. Androl. 5, 15–30 (1995). https://doi.org/10.1007/BF03034299
Issue Date:
DOI: https://doi.org/10.1007/BF03034299