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Abstract

Background:Clomiphene citrate has been proposed as pre-treatment for infertile men with non-obstructive,
testicular azoospermia (NOA) before surgery for testicular sperm extraction (TESE), especially when serum
testosterone is low.

Case presentation:Here, we report on a 33-year old azoospermic patient with a previous history of repeated
“fresh” TESE and clomiphene citrate therapy (50 mg/day over 6 months) before undergoing microscopically assisted,
bilateral testicular biopsy. Comprehensive histological and immunohistochemical work-up revealed a
heterogeneous spermatogenic arrest at the level of spermatogonia or primary spermatocytes, with focally preserved
spermatogenesis up to elongated spermatids in the right testis. In the left testis, the majority of tubules (> 70%)
showed no tubular lumen or regular seminiferous epithelium but a great number of spermatogonia-like cells. These
cells proved to be normally differentiated spermatogonia (positive for melanoma associated antigen 4 (MAGEA4),
negative for placental alkaline phosphatase (PlAP)) with increased proliferative activity (positive for proliferating cell
nuclear antigen (PCNA)) and a slightly higher rate of apoptotic cells. When compared to a tissue control with
normal spermatogenesis, expression of sex hormone receptors androgen receptor (AR), estrogen receptor (ER)
alpha, and G-protein coupled estrogen receptor 1 (GPER1) was not altered in patient samples. Sertoli cells appeared
to be mature (positive for vimentin, negative for cytokeratin 18), whereas the expression of zona occludens protein
1 (ZO-1), claudin 11, and connexin 43 was absent or dislocated in the tubules with abundance of spermatogonia.

Conclusion:This result suggests that formation of the blood-testis barrier is disturbed in affected tubules. To our
knowledge this is the first observation of excessive, non-malignant proliferation of spermatogonia in a NOA patient.
Although underlying molecular mechanisms remain to be elucidated, we hypothesize that the unusual pathology
was triggered by the high-dose clomiphene citrate treatment preceding testicular biopsy.
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Résumé

Contexte: Chez les hommes infertiles qui présentent une azoospermie non obstructive (NOA), le citrate de
clomifène a été proposé comme pré-traitement avant la chirurgie pour extraction testiculaire de spermatozoïdes
(TESE), surtout quand la testostérone sérique est basse.

Présentation du cas:Nous rendons compte, ici, d’un patient azoospermique de 33 ans avec antécédent de
traitements répétés par TESE « frais » et par citrate de clomifène (50 mg/jour sur 6 mois) avant de subir une biopsie
testiculaire bilatérale assistée microscopiquement.
L’étude histologique et immunohistochimique a révélé un arrêt hétérogène de la spermatogénèse au stade de
spermatogonies ou de spermatocytes primaires, avec des foyers de spermatogenèse préservée jusqu’au stade de
spermatides allongées dans le testicule droit.
Dans le testicule gauche, la majorité des tubules (>70%) ne présentaient ni lumière tubulaire ni épithélium
séminifère régulier mais un grand nombre de cellules spermatogonies-like. Ces cellules se sont avérées être des
spermatogonies normalement différenciées (positives pour l’antigène 4 associé au mélanome (MAGEA4), négatives
pour la phosphatase alcaline placentaire (PlAP)) avec une activité proliférative accrue (positives pour l’antigène
nucléaire de prolifération cellulaire (PCNA)) et un taux un peu plus élevé de cellules apoptotiques. Comparée à celle
d’un tissu témoin avec spermatogenèse normale, l’expression des récepteurs aux hormones sexuelles, récepteur aux
androgènes (AR), récepteur aux estrogènes (ER) alpha et récepteur 1 à la protéine G couplée aux estrogènes
(GPER1), n’était pas modifiée dans les échantillons du patient. Les cellules de Sertoli semblaient matures (positives à
la vimentine, négatives cytokératine 18), tandis que l’expression de la protéine 1 de la zone occludens (ZO-1), de la
claudine 11, et de la connexine 43 était absente ou délocalisée dans les tubules présentant une abondance de
spermatogonies.

Conclusion:Ces résultats suggèrent que la formation de la barrière hémato-testiculaire est perturbée dans les
tubules affectés. À notre connaissance, il s’agit de la première observation d’une prolifération excessive et non
maligne de spermatogonies chez un patient avec NOA. Bien que les mécanismes moléculaires sous-jacents restent
à élucider, nous supposons que cette pathologie inhabituelle a été déclenchée par le traitement au citrate de
clomifène à haute dose précédant la biopsie testiculaire.

Mots-Clés:Azoospermie, Citrate de Clomifène, Infertilité Masculine, Spermatogonies, Barrière hémato-testiculaire,
Fonction de la Cellule de Sertoli

Background
Male factor infertility is involved in approximately 50% of
couples unable to conceive within 12 months of regular,
unprotected intercourse [1]. Among those men referred
for andrological diagnostic work-up, azoospermia is ob-
served in 10–15% of cases, with the majority of patients
suffering non-obstructive azoospermia (NOA) [2, 3]. In
contrast to treatable forms of hypogonadotrophic hypo-
gonadism, primary testicular failure resulting in NOA rep-
resents the most severe form of male factor infertility [4].
At the histological level, patterns of testicular damage
range from hypospermatogenesis and spermatogenic ar-
rest to Sertoli cell-only syndrome [for review see [5, 6].
Underlying etiologies are largely heterogeneous and in-
clude both congenital and acquired disorders, such as Kli-
nefelter’s syndrome, cryptorchidism, orchitis, or toxic/
iatrogenic insults [7]. In a significant proportion of pa-
tients no cause can be identified (idiopathic azoospermia).
With the introduction of intracytoplasmic sperm injection
(ICSI), surgical sperm retrieval became a therapeutic

option. Open, bilateral biopsy has been recommended for
testicular sperm extraction (TESE), which is successful in
about 50% of NOA patients [7, 8]. Whether microdissec-
tion under an operating microscope (mTESE) is superior
to the conventional procedure (cTESE) remains a matter
of ongoing debate [8].

While definitive non-invasivemarkers predicting success-
ful sperm retrieval for infertile men with NOA are lacking,
hormonal pre-treatment in orderto increase intratesticular
testosterone levels has been proposed [9, 10]. Therapeutic
concepts are similar to those used empirically in cases of
idiopathic oligozoospermia and comprise anti-estrogens
such as clomiphene citrate (CC) and tamoxifen [4, 11].
From their meta-analysis of available studies, Chua et al.
[12] concluded that anti-estrogens have beneficial effects
on sperm concentration and pregnancy rates when pre-
scribed for idiopathic maleinfertility. In NOA patients
treated with CC, sperm retrieval rates were significantly
higher compared to untreated controls, and in some men
return of sperm to the ejaculate was reported [9, 13]. Other
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studies, however, produced conflicting results [10]. Ran-
domized controlled trials investigating anti-estrogens for
improvement of TESE success are unavailable to date.

Here, we report on a 33-year old azoospermic patient
with a previous history of repeated“fresh” TESE and off-
label CC therapy over 6 months before undergoing com-
bined multi-focal and microscopically assisted, bilateral
testicular biopsy.

Case presentation
Patient history
The 33-year old patient presented with couple infertility.
Initial andrological work-up in another center 5 years
earlier had revealed azoospermia, without any clinical
signs or symptoms. Hormone analyses were within nor-
mal range (Table1), whereas genetic testing showed a
heterozygous cystic fibrosis transmembrane conductance
regulator (CFTR) gene mutation (R117H), but neither
karyotype nor Y chromosome abnormalities. Available
medical reports indicated a first bilateral TESE with
cryopreservation of few testicular sperm of insufficient
quality, followed by a treatment with 25 mg CC per day
over 3 months in order to increase gonadotropin levels
(Table 1). Subsequently, a second bilateral“fresh” TESE,
allowed for successful in vitro fertilization (IVF)/ICSI,
resulting in a pregnancy and birth of a healthy son. With
the desire to have another child, the patient had a third
bilateral “fresh” TESE 3 years later alio loco, after he had
restarted CC therapy (50 mg/day, over 1.5 months). As
sperm retrieval remained negative, he continued CC
therapy (50 mg/day) and was referred to our center for
repeated testicular surgery 6 months later. From previ-
ous procedures, neither histology, nor cryopreserved
sperm were available.

Clinical examination showed no genital abnormalities,
with testis volumes of 20 ml (left) and 13 ml (right), as
well as bilaterally palpable vasa deferentia. Ultrasound
revealed regular organ patterns, i.e. normal testicular
texture. Agenesis of seminal vesicles or kidney could be

excluded. Semen analysis confirmed azoospermia, while
signs of infection/inflammation or accessory gland dys-
function were not detected (Suppl. Table1). Endocrine
parameters and their longitudinal follow-up are com-
piled in Table1. Testicular surgery was performed bilat-
erally under general anesthesia as described elsewhere
(combined trifocal and microscopically assisted ap-
proach) [14]. Tissue specimens from each retrieval site
were subjected to histological evaluation as well as cryo-
preservation (TESE).

Histological evaluation of testicular biopsies
Processing of testicular tissue, histological evaluation and
score count analysis of spermatogenesis were performed
as previously described [6, 15] (seeSuppl. Material). Score
count analysis of all available biopsies revealed severely
disrupted spermatogenesis (Suppl. Fig.1). In the right
testis, single seminiferous tubules with qualitatively pre-
served, but quantitatively severely reduced spermatogen-
esis (hypospermatogenesis) was detected in three of four
biopsies, accompanied with a focal tubular atrophy and ar-
rest of spermatogenesis at the level of primary spermato-
cytes (representative picture shown in Fig.1a). Score
counts ranged from 0 (no tubules with elongated sperma-
tids) to 0.1 (1% of tubules with at least single elongated
spermatids) (Fig.1a). In the left testis, tubules showed ei-
ther only spermatogonia (i.e. arrest of spermatogenesis at
the level of spermatogonia, score count = 0) or spermato-
gonia and single primary spermatocytes (i.e. arrest of
spermatogenesis at the level of primary spermatocytes,
score count = 0) (summarized as“spermatogonial arrest”
for short characterization of the leading pathology). Most
interestingly, tubules showing a massive increase in num-
bers of spermatogonia-like cells were prevalent (represen-
tative picture shown in Fig.1b). To compare the number
of spermatogonia/spermatogonia-like cells in patient and
control tissues, a semi-quantitative evaluation by counting
spermatogonia in 25 randomly chosen tubules in each
sample was performed (for details, seeSuppl. Material,

Table 1 Hormonal follow-up of a patient with non-obstructive azoospermia before, during, and after clomiphene citrate treatment

09/2013 04/2014a 01/2018a 05/2018a 07/2018b

FSH[IU/l]
(1.0–10.0)

2.1 5.3 9.2 8.0 7.3

LH [IU/l]
(1.0–9.0)

2.6 9.8 8.3 8.8 5.5

Testosterone[ng/ml]
(3.50–10.00)

3.9 14.6 13.5 9.1 6.8

Estradiol [pg/ml]
(11–41)

15.8 – 101 82 52

SHBG[nmol/l]
(17.3–65.8)

28.2 – 43.0 40.0 41.5

aduring clomiphene citrate treatment;bafter 4th testicular biopsy / TESE
FSHfollicle stimulating hormone,LHluteinizing hormone,SHBGsex hormone binding globulin,IU/l international units per liter, ng/ml: nanogram per milliliter, pg/
ml: picogram per milliliter, nmol/l: nanomole per liter
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Suppl. Fig.2). A biopsy obtained from a patient with ob-
structive azoospermia and normal spermatogenesis (NSP)
served as control. By this approach, we were able to show
a significantly higher number of cells in the tubules of the
patient’s left testis packed with spermatogonia-like cells
compared to NSP (Suppl. Fig.2). In both testes, morph-
ology of somatic Sertoli cells and Leydig cells appeared
normal. By histological evaluation, no signs of malignancy
were detected (immunohistochemistry addressing PlAP
proved to be negative; not shown).

Immunohistochemistry
In order to compare the patient’s histopathology with
normal spermatogenesis (NSP), a biopsy obtained from a
patient with obstructive azoospermia served as control
(see above). As positive control for CK18, immunohisto-
chemistry on testicular tissue from a patient with germ
cell neoplasia in situ (GCNIS) was performed (Suppl.
Fig. 3). As shown by Donner et al. [15], dysfunctional
Sertoli cells in GCNIS express CK18. By using melan-
oma associated antigen 4 (MAGEA4) as a germ cell
marker for type A and B spermatogonia, spermatogonia
were detected in NSP lining up the basal membrane
(Fig. 2a) and the abundant cells inside the peculiar sem-
iniferous tubules of the patient’s left testis could be iden-
tified as spermatogonia, too (Fig.2b). To compare the
number of MAGEA4-positive spermatogonia in patient
and control specimens, a semi-quantitative evaluation as
outlined above was applied (for methods, seeSuppl. Ma-
terial, Suppl. Fig.4) [16, 17]. Compared to NSP, the
number of MAGEA4 positive cells was significantly in-
creased in the patient’s tubules containing only spermato-
gonia, whereas patient’s tubules containing spermatogonia
and single primary spermatocytes did not differ from NSP
(Suppl. Fig.4). Moreover, by applying distinct markers for

Sertoli cells (i.e. vimentin, Fig.2c / d, and cytokeratin 18
(CK18), Fig.2e / f), we were able to show that Sertoli cells
in both control and patient were normal in regard to
intermediate filament presence and location. Comparison
of NSP and patient tissue sections did not reveal marked
differences in Sertoli cell staining intensity, with positive
results for vimentin in all samples. In those tubules with
excessive numbers of spermatogonia, distribution of
vimentin was less (Fig.2d). Staining for CK18 remained
negative throughout all specimens. Staining of sex hor-
mone receptors, such as androgen receptor (AR, Fig.3a /
b), estrogen receptor alpha (Fig.3c / d), and membrane-
bound G-protein coupled estrogen receptor 1 (GPER1,
Fig.3e / f) was comparable in the control as well as in pa-
tient samples displaying spermatogonial arrest, including
those tubules with abundance of spermatogonia.

Proliferating cell nuclear antigen (PCNA) immunohis-
tochemistry and Terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) staining were used to
evaluate spermatogonial proliferation and cell death. By
this, we were able to show that proliferation rate seems
to be higher in tubules of the patient’s left testis reveal-
ing abundance of spermatogonia (Fig.4a / b) compared
to control. To compare the number of PCNA-positive
spermatogonia in patient and control samples, the semi-
quantitative evaluation outlined above was applied (for
methods, seeSuppl. Material, Suppl. Fig.5) [18]. A sig-
nificantly higher number of PCNA-positive spermato-
gonia was observed in the patient’s tubules packed with
spermatogonia only, when compared to tubules with
spermatogonia and single primary spermatocytes as well
as NSP (Suppl. Fig.5). DNA fragmentation as shown
with TUNEL staining was also considerably higher in
specimens of the patient’s left testis compared to the
control (Fig. 4c / d). Again, a semi-quantitative

Fig. 1 Histological evaluation.a Representative picture of the right testis, taken from the middle section. Two tubules are shown, the left one
presenting only primary spermatocytes (lined arrowheads) and degenerating germ cells (asterisk), whereas the right tubule shows additionally a
small group of elongated spermatids (circle). Gray lined arrowheads: spermatogonia.b Representative picture of the left testis, taken from the
lower pole. Two tubules are shown, the left one presenting single primary spermatocytes (lined arrowheads) and spermatogonia (gray lined
arrowheads) correctly aligned to the basal membrane, and the right tubule showing high numbers of spermatogonia/spermatogonia-like cells,
dislocated and no longer restricted to the basal membrane (black arrowheads) with a single spermatocyte. Hematoxylin eosin (HE) staining,
bar 50μm
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evaluation by counting TUNEL-positive spermatogonia
was applied (see above; Suppl. Fig.6). A significantly
higher number of TUNEL-positive spermatogonia could
be identified in the patient’s tubules containing only
spermatogonia compared to NSP (Suppl. Fig.6).

Sertoli cell function and blood-testis barrier formation
was analyzed by ZO-1, claudin 11 and connexin (CX) 43
immunohistochemistry in control (Fig.5a, c, and e) and
spermatogonial arrest in the patient’s left testis (Fig.5b,
d, and f). Staining results indicate that these proteins
were absent in tubules containing spermatogonia as the
only germ cell population, or - if present - were

dislocated in comparison to the control. Interestingly, in
areas where single primary spermatocytes were detect-
able in seminiferous tubules, ZO-1, claudin 11 and
CX43 were present and located correctly.

Discussion
To our knowledge this is the first observation of an ex-
cessive, non-malignant proliferation of spermatogonia in
an infertile man with NOA. Although discordant histo-
logical patterns between organs occur in up to one third
of patients undergoing testicular biopsy [for review see
[5], the unilateral manifestation of this unusual

Fig. 2 Immunohistochemical analysis of germ and Sertoli cells. Picturesa, c, ande show intact spermatogenesis (NSP) as control, picturesb, d,
and f show spermatogonial arrest (patient’s left testis).a, b By using germ cell marker MAGEA4, we were able to differentiate Adarkspermatogonia
(black arrowheads) and Apale spermatogonia (black arrows) in NSP. In spermatogonial arrest, cells were MAGEA4-positive and therefore identified
as spermatogonia. Sertoli cells (circles) and single megalospermatocytes (asterisk) were not stained.c, d Vimentin was present in Sertoli cell
cytoplasm (ovals) in NSP and arrest. The upper tubule in D contains single spermatocytes and shows normal vimentin distribution. In the lower
tubule, less intense vimentin staining in Sertoli cells were visible.e, f No specific cytokeratin 18 staining was detected in NSP and arrested
spermatogenesis. Aminoethyl carbazole (AEC) detection, bar 50μm, inset as negative control without first antibody
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