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Abstract

There is substantial evidence that paternal obesity is associated not only with an increased incidence of infertility,
but also with an increased risk of metabolic disturbance in adult offspring. Apparently, several mechanisms may
contribute to the sperm quality alterations associated with paternal obesity, such as physiological/hormonal alterations,
oxidative stress, and epigenetic alterations. Along these lines, modifications of hormonal profiles namely reduced
androgen levels and elevated estrogen levels, were found associated with lower sperm concentration and seminal volume.
Additionally, oxidative stress in testis may induce an increase of the percentage of sperm with DNA fragmentation. The
latter, relate to other peculiarities such as alteration of the embryonic development, increased risk of miscarriage, and
development of chronic morbidity in the offspring, including childhood cancers. Undoubtedly, epigenetic alterations
(ie, DNA methylation, chromatin modifications, and small RNA deregulation) of sperm related to paternal obesity and
their consequences on the progeny are poorly understood determinants of paternal obesity-induced transmission. In
this review, we summarize and discuss the data available in the literature regarding the biological, physiological, and
molecular consequences of paternal obesity on male fertility potential and ultimately progeny health.
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Résumé

De plus en plus de données tendent a montrer que I'obésité paternelle a non seulement des effets néfastes sur la santé
métabolique et reproductive de I'individu mais également sur celle de sa descendance. Les mécanismes mis en jeu dans
ce processus incluraient des altérations physiologiques et hormonales des fonctions reproductives de 'homme obese
ainsi que des altérations épigénétiques au niveau du génome spermatique. Les modifications hormonales associées a
I'obésité et qui se caractérisent principalement par une réduction du taux d'androgénes et une augmentation du niveau
d'estrogéne induiraient une altération des parametres spermatiques, une diminution de la concentration ou de la
numération totale en spermatozoide et du volume séminal. Le stress oxydatif dans le testicule induirait une
augmentation de la fragmentation de I'ADN spermatique et pourrait rendre compte de I'augmentation des
risques de fausses-couches, des problemes de développement embryonnaire ainsi que de I'augmentation des
risques de mortalité chez la descendance, problemes fréquemment rencontrés lorsque le pere est. obese. Les
modifications épigénétiques (altérations des profils de méthylation de I'ADN, de la structure de la chromatine
ou/et des profils d'expression des ARN spermatiques) induites par I'obésité sont, quant a elles, loin d'étre comprises,
méme si elles sont, surement, les vecteurs clés de la transmission épigénétique paternelle des maladies métaboliques.
L'objet de cette revue est. de résumer puis de discuter les différentes études expérimentales et épidémiologiques
publiés a ce jour sur les conséquences physiologiques et moléculaire de I'obésité paternelle sur la santé de l'individu et
sur celle de sa descendance.
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Background
Spermatogenesis is a tightly regulated process allowing
the production of highly specialized cells, the spermato-
zoa. In order to give rise to viable progeny, spermatozoa
requires two pivotal properties: while the first one is to
fertilize oocytes to produce a diploid cell, the zygote, the
second one is to bring to the zygote half of its genetic
and epigenetic components. Consequently, we can pre-
sume that factors that modify the entire physiology of an
individual might have negative impact on the quality of
its sperm, for example the case of obesity.

As we know body weight homeostasis (from the Greek

potog, hémoios - meaning —same and otaoig (),
stasis - meaning —standing) is crucial for protecting
against weight fluctuations. Hence, this equilibrium is
adjusted by the metabolic energy network and the con-
trol of food intake. However, an imbalance between the
energy intake and energy expenditure leads to body
weight fluctuations (e.g., gain or loss). The most com-
mon weight fluctuations are overweight and obesity, de-
fined as an excessive accumulation of adipose tissue that
is either generalized or localized within the body [1, 2].
Two modalities can be used to assess corporal obesity:
(i) the measurement of the waist circumference (meas-
urement at the top of iliac crest according to National
Health and Nutrition Examination Survey (NHANES) or
(ii) the meansurement of the midpoint between the last
palpable rib and top iliac crest according to the World
Health Association (WHO)) and the calculation of the
body mass index (weight/height ratio, BMI (body mass
index) = weight (Kg) / height (m?) of an individual,
allowing to approximately determine the percentage of
fat in the body) [3]. Based on the latter ratio, individuals
can be grouped into the following six categories: under-
weight, normal weight, overweight, obese class I, class II
and class III (Table 1). Recent epidemiological studies
have reported a striking increase prevalence of obesity
worldwide. It is noteworthy to mention that these values
reaches alarming percentages, for example 34.9%, 36%
and 28.2% in USA, Saudi Arabia, and Lebanon respect-
ively [4-7]. Strikingly, we pointed a high prevalence of
13% in young men of reproductive age suffering from
overweight and obesity [8, 9]. Besides other known

Table 1 Table showing the classification of the overweight and
obesity [147].

Categories Body mass index ( Kg/m?)
Underweight <185

Normal weight 18.5-24.9

Overweight 25.0-29.9

Class | obesity 30.0-34.9

Class Il obesity 35.0-399

Class lll, extreme obesity > 40
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pathologies associated to obesity, such as hypertension,
kidney disease, and type 2 diabetes, male infertility
linked to obesity has sparkled the interest of the research
community [10]. While several studies indicated that
obesity could negatively impact sperm quality through
physiological alterations (such as hormonal profiles
modification (ie reduced androgen levels accompanied
by elevated estrogen levels) [11, 12], and molecular alter-
ations (such as epigenetic modifications which may have
health cues in the offspring) [13-16], other studies did
not support completely this association [17, 18]. Accord-
ingly, we elected to review and discuss the impact of pa-
ternal obesity on the male reproductive health as well as
on the metabolic health of the progeny.

To write this review, we systematically collected pa-
pers published until September 2017, by searching
Pubmed (URL:http://www.ncbi.nlm.nih.gov/pubmed/) and
using keywords (such as epigenetic inheritance, sperm,
obesity) related to the study background. This search was
limited to English-languages publications.

Paternal obesity and male reproductive health
Effect of obesity on sexual function and seminal plasma
composition

Sedentary lifestyle and increase of calories intake by
obese men could impair their reproductive health in dif-
ferent ways. On one hand, obese men are at higher risk
of facing erectile dysfunction and reduced libido [19-21].
Interestingly, these functions were demonstrated to be re-
stored after weight loss [22]. On the other hand, the sex
accessory glands and the seminal plasma components
could also be affected by male obesity [23]. The seminal
plasma is an alkaline gelatinous fluid (pH ~7.2), made up
of seminal vesicle secretions (~60% of the total semen)
and prostate gland secretions (~20% of the total semen
volume). The secretions of the different sex glands con-
tribute to the complex content of the seminal plasma [24].
This biological fluid could regulate sperm physiology by
several ways such as: providing the energy source for
spermatozoa [25], inducing biochemical modification of
sperm during capacitation [26], and regulating acrosome
reaction 4 [27]. Particularly, it was shown in mice that the
excision of the seminal vesicle reduced the percentage of
spermatozoa with progressive motility, accordingly this
will drastically affect in the female uterine cavity, thus de-
creasing the pregnancy rate in this model [28].This study
highlighted the importance of the seminal fluid as a trans-
port and survival medium for spermatozoa. Furthermore,
the seminal fluid can also modulate the female reproduct-
ive tract, and this finding was illustrated by several studies
performed in mice, pigs, and humans [29]. For instance, it
was shown that the excision of the seminal vesicle in a
mouse model induced in part the up-regulation of some
embryotrophic factor genes and the down-regulation of
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an apoptosis- inducing factor in the oviduct [30]. In
addition, the absence of the seminal vesicle secretions im-
paired the blastocyst development and severely affected
the resulting progeny that exhibited obesity, intolerance to
glucose, and hypertension [30]. These results strongly in-
dicated that the seminal fluid components regulate gene
expression in the oviductwhich influences embryo devel-
opment and progeny health. In addition, several studies in
mammals highlighted the role of seminal plasma in regu-
lating fetus growth trajectory [31-33]. Particularly, in a
mouse model of diet-induced obesity, Binder and col-
leagues showed that seminal vesicle proteins and metabo-
lites are affected by obesity [34]. Interestingly, clinical data
reported that obese men are at higher risk of having a re-
duced semen volume and an alterated seminal plasma bio-
chemistry compared to non-obese men [35]. Notably, the
level of insulin, leptin, fructose, and interleukin 8 were
found to be high in the semen of obese men. Conversely,
adiponectin, progranulin, and alphaglucosidase levels were
lower in obese men compared to lean men [36—39]. These
alterations may affect the sperm biology by several ways.
For instance, fructose is secreted by the seminal vesicle,
and it is the major energy substrate in the semen. The
level of seminal fructose was shown to be altered by sev-
eral etiologies of male infertility [40, 41]. Plus, a positive
correlation was found between seminal fructose and
sperm DNA fragmentation [42]. Thus, altered seminal
fructose level in obese men probably reflects an altered
seminal vesicle function [43]. Furthermore, the receptors
of leptin and insulin were shown to be present on the
sperm plasma membrane [44]. Probably, the alterations of
the level of these two hormones in the seminal plasma of
obese men may alter the endocrine signaling inside the
spermatozoa. In parallel, it was demonstrated that the
seminal plasma initiates changes in the cytokine profile of
the uterine cavity and thus influence early embryo devel-
opment and implantation [45]. For this reason, high levels
of interleukin-8 in the semen of obese men may alter the
inflammatory response in the uterine cavity and may im-
pair implantation and progeny health. Overall, these
data opens new avenue to investigate the drawbacks
of an altered seminal plasma composition in obese
men on spermatozoa, the uterine environment, and
embryo development.

Effect of paternal obesity on testis

Basically, the human testis is divided by a group of septa
into 250 to 300 lobules. Each lobule is composed of
interstitial tissue and 1-3 seminiferous tubules. While
the interstitial and the tubular compartments are histo-
logically distinguishable from each other, they are
physiologically connected. All the processes involved in
the production of male gametes (sperm cells) take place
in the tubular compartment. However, the interstitial
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tissue is composed of Leydig cells (200 x10°Leydig cells
per testis), immune cells, blood vessels, fibroblasts, and
connective tissue, and its main function is the pro-
duction of male sex hormones. The integrity of both
compartments is crucial for male gametes differenti-
ation (Fig. 1) [46].

Effect of obesity on Leydig cell physiology and androgen
homeostasis
Firstly described in 1850 by Franz Leydig, Leydig cells
secrete the most important male steroid hormone called
testosterone via steroidogenesis. These cells can easily
access to the blood vessels, which permits the uptake of
the luteinizing hormone (LH) and cholesterol from the
circulation in order to produce testosterone. The pro-
duced male sexual hormone diffuses into the interstitial
and tubular compartment to regulate spermatogenesis.
In addition, when testosterone is released into the blood-
stream it plays various roles in brain masculinization and
sexual behavior, modulation of the larynx growth, stimula-
tion of erythropoietin synthesis in the kidney, maturation
of male sexual organs, hair growth, regulation of the bones
muscle mass, and protein synthesis in the liver [47].
Furthermore, testosterone indirectly can regulate the
action of the hypothalamus-pituitary-testis axis. In fact,
male hypothalamus releases the gonadotropin-releasing
hormone (GnRH) that will bind to its receptor on the
pituitary gonadotroph cells stimulating the expression
and the release of LH and follicle-stimulating hormone
(FSH) [46]. LH stimulates the testosterone production
by the Leydig cells by binding to its receptor (LHR) on
the Leydig plasma membrane [48]. The circulating tes-
tosterone is mainly bound to albumin or to sex hormone
binding globulin (SHBG) which is originally synthesized
in the liver. SHBG was demonstrated to reduce the
clearance rate of androgens and regulates their access to
target tissues [49]. In addition, the free circulating tes-
tosterone can be transformed in the adipose tissue into
estrogen (E2) by an enzyme called aromatase (Fig. 2)
[50]. Notably, in obese men, excess fat mass and hyper-
insulinemia may alter SHBG production in the liver.
Therefore, this will increase the amount of free testoster-
one available for conversion into E2 in the accumulated
fat mass, which in turn will reduce GnRH secretion in
the hypothalamus [51-53]. The above-mentioned patho-
physiological changes could explain the increase in E2
concentration and the decrease in testosterone and
gonadotropins in obese men [12, 53]. It is known that,
glucose and lipid homeostasis are essential for normal
Leydig cells function. Thus, any alterations in glucose
levels or consumption of high amounts of unhealthy fats
can inhibit testosterone production and induce Leydig
cells apoptosis [54-56].
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Fig. 1 lllustration of testicular interstitial tissue in normal weight men (a) and obese men (b). Spz = Spermatozog; sc = Sertoli cells; PT = peritubular
cells; BM. = basement membrane. TNF-alpha: Tumor necrosis factor alpha; MCP-1 = monocyte chemoattractant protein-1; F4/80: a defining marker of
murine macrophage populations
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Effect of obesity on Sertoli cells functions molecules modulating their own function as well as that
Sertoli cells play a crucial role in germ cells development  of germ cells and Leydig cells [47].
as well as in the regulation of spermatogenesis. These It was shown that the hormones involved in the regu-

cells receive hormonal messages (FSH and testosterone) lation of spermatogenesis (FSH) and secreted by the
and local signals (autocrine and paracrine) to secrete  Sertoli cells (inhibin B, AMH) were lower in obese men
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Fig. 2 Schematic representation of the hypothalamic pituitary testicular axis and hormone testicular production upon obesity. Solid lines represent the
hormonal regulation in normal weight men; dashed lines represent the inhibitory effects of obesity. AMH: anti-millerien hormone; ABP: androgen
binding protein; E2: oestrogen; FSH: follicle stimulating hormone; GnRH: gonadotropin releasing hormone; LH: luteinizing hormone; LHR: luteinizing

hormone receptor; SHBG: sex hormone binding globulin; StAR: steroidogenic acute regulatory protein
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when compared to non-obese individuals [53, 57, 58].
Moreover, obesity may alter Sertoli cell metabolism
which will affect germ cells. On the one hand, insulin
stimulates several activities in Sertoli cells, mainly carbo-
hydrate metabolism [59]. Lactate is produced by Sertoli
cells under the control of insulin. It is the main energy
source for germ cells, in addition ofhaving an anti-
apoptotic effect [60, 61]. Rato et al. showed that feeding
rats with a high-energy diet increased the expression of
glucose transporters and glycolytic enzymes in Sertoli
cells. Altogether, these changes increased the level of
lactate leading to oxidative stress in these cells [56]. In
addition, testicular biopsies from diabetic men showed
vacuolization of Sertoli cells. These observations may alter
testicular glucose homeostasis (Fig. 1b) [62]. On the other
hand, lipid metabolism also plays an important role in the
testicular tissue function. Sertoli cells can uptake fats
through various modes, either by passive diffusion through
the plasma membrane or by protein facilitated transport, or
from phagocytosed cells. Sertoli cells may utilize the inter-
nalized lipids to produce energy (ATP) or to generate poly-
unsaturated fatty acids (PUFAs). The PUFAs are essential
for germ cells plasma membrane fluidity and flexibility and
thus ultimately for fertilization [63]. The excessive con-
sumption of saturated fats present in unhealthy diets may
lead to their accumulation in testicular cells. This will
affect the fatty acid composition of plasma membrane
and the process of spermatogenesis [56, 64].

It is important to note that, the blood testis barrier
(BTB) can modulate to a certain extent glucose and lipid
uptake depending on their availability in blood [62].
However, histological analysis of testis from mice on
high fat diet demonstrated that obesity can compromise
the BTB integrity [65]. In the same perspective, obesity
may bypass the BTB adaptive mechanisms to changing
environmental conditions and thus targeting its main
functions in selective transport and permeability [62].

Effect of obesity on spermatogonia

The spermatogonia are the final germline stem cells ris-
ing from primordial germ cells (PGC). They are charac-
terized by a self-renewal capacity, and their commitment
to spermatogenesis. Male obesity could also impair the
survival and the differentiation of these cells [66]. Of
particular interest, Interleukin 6 (IL-6) is a cytokine se-
creted by adipose tissue and macrophages. At elevated
concentrations, it induces an inflammatory response. A
recent study has shown that a high level of IL-6 is de-
tected in the serum and testis of obese mice. We could
speculate that this rise may decrease the level of a zinc
finger protein (Z{p637) in spermatogonia. The downreg-
ulation of Zfp637 reduces spermatogonial differentiation
[67]. Furthermore, obesity may induce testicular
hyperthermia. It was found that specific spermato-
gonia (Adark) are more vulnerable to heat stress due
to their high mitotic activity [68, 69]. Altogether,
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these data highlight the negative impact of obesity on
spermatogonial survival and differentiation.

Impact of paternal obesity on sperm parameters
and embryo development

Paternal obesity negatively affects the sperm parameters
Many systematic reviews were performed in humans to
evaluate the effects of male obesity on sperm parame-
ters, DNA fragmentation, mitochondrial membrane po-
tential, and fertility outcomes [11, 18, 70-72]. Although
some discrepancies were noted [11, 18], overall these
studies indicated that overweight and obesity in male are
associated with high incidence of oligozoospermia and
azoospermia [73-75], reduction in the percentage of
normal sperm morphology [11, 18], increased percentage
of sperm with DNA fragmentation and abnormal mito-
chondrial membrane potential [11, 75, 76].

Some of these complications were found linked to tes-
ticular oxidative stress [77]. In fact, spermatogenesis is
associated with a high rate of oxygen consumption and a
resulting important ROS production by mitochondria
causing oxidative stress [78]. The hyperglycaemia and
hyperlipidemia would exacerbate this outcome. Indeed,
intracellular accumulation of lipids increases [3-oxidation
rate of fatty acids. When overloaded, stressed testicular
mitochondria reduce ATP production, and induce ROS
overproduction [56]. More so, high-energy diets would
reduce the testicular antioxidant system by reducing the
expression of ROS-detoxifying enzymes in the testis
such as proliferators-activated receptor y coactivator
1a(PGC-1a) and sirtuin 3 (SIRT3) [79]. Not surprisingly,
studies in humans and rodents have demonstrated that
obesity is associated with increased sperm ROS produc-
tion [80, 81]. High ROS can produce important destruc-
tive effects in tissues by causing alterations in
membranes causing an irreversible cellular damage. On
the other hand, elevated ROS levels can induce DNA
damage in spermatids [81] and in mature sperm [82-86].
Altogether, these findings reveal that obesity induces
an oxidative stress in the testis and thus impairs
sperm quality [56].

Paternal obesity and embryo development

It was demonstrated that obesity in rodents has a nega-
tive impact on pre-implantation embryo development, in
particular we pointed a higher percentage of one —cell
embryo block, delayed cell cycle progression, decreased
blastocyst number, and altered carbohydrates metabol-
ism [87, 88]. Regarding human in vitro embryo develop-
ment, very few reports were published. Whereas two
studies didn‘t find any significant difference between
obese and non-obese men regarding embryologic param-
eters, Bakos et al. spotted a significant decrease in blas-
tulation rate with increasing BMI [84, 89, 90]. Strikingly,
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a recent meta-analysis included 115,158 participants,
showed that paternal obesity may reduce the live birth
rate per assisted reproductive technology (ART) cycle,
and increases by 10% the risk of facing a non-viable
pregnancy [11]. These findings highlighted the negative
impact of obesity on the embryonic development.

Paternal obesity and consequence on the
metabolic health progeny

A new area of research in andrology shed light on the
long-term consequences of paternal health, at the time
of conception, on the health of the offspring. For ex-
ample, paternal age, smoking, and exposure to toxic
chemicals may increase the risk of neuropsychiatric dis-
orders, metabolic alterations, respiratory tract infection,
and cancer in the offspring [91-97]. Similarly, accumu-
lating epidemiological studies in humans suggest that
paternal body mass index (BMI) may influence the
health of the next generation [32, 98—102]. As reported
by Kaati et al., when paternal grandfather experienced a
surfeit of food at the age of 8—12 years old, the risk of
grandson’s death by T2DM increased by 4 folds. On the
other hand, the risk of death by cardiovascular complica-
tions was reduced in case of low food availability during
father’s young age [100]. However, in research using hu-
man clinical samples the amount of material available is
most often scarce as well as for ethical reasons, molecu-
lar mechanisms involved in this process are still largely
unknown. Although human genetics and epigenetics epi-
demiological studies provided some clues on these
mechanisms, however, the high degree of individual gen-
etic/epigenetic variation render the interpretation of the
data very complicated. Based on recent significant pro-
gress in rodent models [15, 103-113], we can now
propose several mechanistic hypotheses. We will de-
scribe these molecular mechanisms in the next sections.

Possible mechanisms of intergenerational and
transgenerational inheritance of paternal acquired obesity
Modifications known to be part of the epigenome,
namely DNA methylation, chromatin structure, and non
coding RNA might be involved in the molecular mech-
anism of this process [114].

DNA methylation and epigenetic inheritance

The chemical modification of DNA by the addition of a
methyl group to the 5 position of cytosine was first dis-
covered in 1948 by Rollin Hochkiss [115]. This modifica-
tion is generally associated with long-term transcriptional
repression [116]. Male and female gametes, like all cells,
contain a specific DNA methylation landscape. Following
fertilization, the majority of these modifications are erased
to generate a totipotent zygote. This process is called epi-
genetic reprogramming [117]. However, some specific
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sequences escape this reprogramming process, and that is
clearly the case of most of imprinted genes that contain
differentially methylated regions regulating their parent of
origin-specific expression [118]. This also appears to be
the case for specific loci that have been marked following
environmental changes such as unhealthy diet [34, 105,
107, 119]. In a cohort of 23 overweight/obese and 44 nor-
mal weight men human, Soubry et al. showed that sperm
from overweight and obese men had significantly lower
methylation rate at several imprinted genes [120]. The
same authors previously found altered methylation pro-
files at several differentially imprinted regions in children
born to obese parents [16]. Experiment studies support
the association between obesity and DNA methylation
alterations in gametes and in the somatic tissues of the
progenies of the obese father. Along these lines, Ng
Sheau-Fang et al. showed that male rats fed a high fat diet
(HFD) gave birth to females (F1) intolerant to glucose
with abnormal insulin secretion. These metabolic alter-
ations were also associated with the histopathological
changes in the pancreatic islets. At the molecular level,
the key islet gene Il113ra2 (interleukin 13 receptor subunit
alpha 2) was hypomethylated and its mRNA was found
up-regulated in the pancreatic islets of the F1 offspring,
suggesting a possible role of DNA methylation in the in-
tergenerational inheritance of the paternal acquired
phenotype [107]. In parallel, paternal diet-induced obesity
in male mice model (C57BL6) was found to be associated
with fetal growth restriction which is characterized by re-
duced fetal and placental weights. The fetal growth restric-
tion is also correlated with an increased risk of developing
obesity and diabetes in adulthood [121, 122]. The molecu-
lar analysis of the placentas showed that peroxisome
proliferator-activated receptor alpha (Ppara) and caspase-
12 (Caspl2) expression were significantly down-regulated
in male placentas from obese fathers when compared to
normal fathers, whereas the global DNA methylation was
only increased in female placentas [23]. Furthermore, the
paternal acquired obesity in mice alters the total body
weight as well as glucose homeostasis in female offspring
(F1) and to a lesser extent in males. These phenotypes
were also transmitted to the second generation (F2) but in
a sex-specific manner. At the epigenetic level, the elon-
gated spermatids of the grandfather’s testes fed a HFD
were significantly hypomethylated when detected by im-
munohistochemistry on testis sections [105]. Finally, in a
recent study, HFD was shown to alter DNA methylation
signature of spermatozoa which was partially transmitted
to the offspring [104].

While these studies showed that an altered DNA
methylation signature of spermatozoa from HFD males
could be passed through the progenies [104], a recent
study indicated that sperm methylome is shaped by gen-
etic and epigenetic variations but not by diet [123].
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Chromatin structure and epigenetic inheritance

The majority of sperm DNA (negatively charged) is
bound to small basic protamines (P1 and P2, positively
charged proteins) causing DNA to coil into toroids
[124]. The toroids are packaged into a highly condensed
chromatin. Moreover, they are attached to the sperm
nuclear matrix by their linker region DNA. The vast ma-
jority of the DNA is hidden within the toroids, for pro-
tection against nuclease digestion [125]. In addition,
protamines cysteine residues can form disulfide bridges
via the thiol (-SH) groups, thus increasing the stability
of the chromatin. At the functional level, this highly
compacted structure represses transcription during sper-
miogenesis and protects the paternal genome during its
journey in the female tract. Moreover, paternal prot-
amines are replaced in the first 2-4 h after fertilization
by maternal histones, rendering the chromatin more
accessible to transcription machinery [126]. A recent
meta-analysis showed that abnormal sperm protamina-
tion was associated with male infertility and sperm DNA
damage. The normal ratio of P1-P2 is approximately 1.
This ratio could be affected by several internal or exter-
nal factors such as thermal stress and cigarette smoking
[127-130]. Not the majority of histones are replaced by
protamines, but a small percentage from 5 to 10% of the
human sperm genome retains paternal histones. In ma-
ture sperm of mice and humans, retained histones and
their modifications (e.g., H3K4me3, H4K27me3) are not
randomly distributed, and they are not replaced by ma-
ternal histones after fertilization [131, 132]. Interestingly,
the retained nucleosomes were found in the promoters
of different developmental genes (such as Hox-, Fox-,
Sox-, gata family genes and noncoding RNAs (micro-
RNAs and long non-coding RNAs)) [126, 133, 134].
Altogether, these findings highlight the possible role of
nucleosome-bound sperm chromatin as a paternally
inherited epigenetic regulator of diet induced obesity.
Several studies supported this hypothesis. For example
Terashima et al. have demonstrated that paternal ac-
quired obesity can modulate histone composition at spe-
cific genes implicated in development and cell fate
decision [135]. On the other hand, the histone deacety-
lases (HDAC) class III or Sirtuin (SIRT1-7) proteins are
regulated by caloric intake. Of particular interest, SIRT6
is expressed in the mouse elongating spermatids and can
play the role of ADP ribosyltransferase and H3 deacety-
lase (H3K9 and H3K56). Palmer et al. found that the
protein level was significantly decreased in spermatids of
HFD-fed male mice compared to controls. Conse-
quently, the percentage of spermatids that stained posi-
tive to the H3K9ac antibody was higher in the HFD-fed
mice compared to controls [81]. In parallel, low-protein
diet was associated with a decrease in the H3K27me3
retention in sperm, specifically in Maoa (Monoamine
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oxidase) and Eftudl (Elongation Factor Like GTPase 1)
promoters [136].

Overall, these findings clearly show that sperm chro-
matin could be modulated by dietary conditions and
could transfer epigenetic information to progeny.

Sperm RNA and epigenetic modification

As described above, sperm is a transcriptionally inactive
cell which has long been thought to be devoid of RNA.
However, several RNA populations including small non-
coding RNAs such as microRNA (miRNAs), endogenous
small interfering RNAs (endo-siRNAs), Piwi-interacting
RNAs (piRNAs), were recently detected in sperm [137].
Since their discovery, several studies demonstrated their
role in both early embryogenesis and epigenetic inherit-
ance [138, 139]. For instance, using intra cytoplasmic
sperm injection experiments, Lui et al. found that sperm
partially deficient in sperm-borne miRNA and endo-
siRNA could successfully fertilize. However, embryos de-
rived from these sperms displayed different embryonic
alterations [139]. On the other hand, sperm-borne
microRNA-34c was only detected in spermatozoa and
zygotes but not in oocytes. It has been shown to be
important for the one-cell embryo DNA synthesis and
the first cleavage division [138]. Altogether, these data
demonstrated the potential role of small RNA in em-
bryonic growth.

Few years ago, we provided the first evidence that
small non-coding RNA molecules (sncRNAs) act as
trans-generational vectors of epigenetic information in
mice. Indeed, we demonstrated that microinjection of
specific microRNA into one cell embryo induced stable
epigenetic modifications leading to specific and inherited
phenotypes. Thus, cardiac hypertrophy, abnormal adult
growth, and fur depigmentation can be induced by the
microinjection into a mouse fertilized oocytes of miR-1,
miR-124, and miR-221 respectively. Importantly, all
these phenotypes can be maintained for at least 2 suc-
cessive generations [140-142].

To further determine whether sperm RNAs would be
critical determinants of the inheritance in an acquired
disorder, micro-injection experiments were performed
into one-cell embryos with sperm RNA from male mice
exposed or not to environmental changes. Thus, sperm
RNAs derived from male sperm exposed to postnatal
trauma into the zygote, can faithfully reproduce the pa-
ternal phenotype in the offspring [143]. Similarly, we
demonstrated that mice derived from the microinjection
into naive embryos of sperm RNA from HFD-fed mice,
even though they had been fed with a control diet, they
developed in adulthood diet-induced pathologies such as
obesity and signs of diabetes [15]. To identify RNA mol-
ecules involved in this epigenetic inheritance, small RNA
deep-sequencing analysis of testis RNAs from HFD-fed
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mice and control was performed and revealed deregula-
tion ofseveral classes of small-RNAs, such as miRNA,
piRNA, and fragments of tRNAs. Notably, these results
were consistent with previous studies [105]. Importantly,
when microinjected into naive zygotes, one of the
deregulated miRNA - the microRNA-19b, induced meta-
bolic alterations that were similar to the diet-induced
phenotypes [15]. In parallel, two other groups found that
tRNA-derived small RNAs (tsRNA) might also contribute
to intergenerational inheritance of metabolic disorders
[103, 106]. In contrast, synthetic microinjected-tsRNAs
did not induce metabolic disorders in the offspring. The
authors suggested that only post-transcriptionally modi-
fied tsRNAs could mediate thetransgenerational inherit-
ance. This conclusion is supported by the evidence of
elevated levels of m°C and m®G modifications in the
tsRNAs of sperms from HFD-fed mice. In addition to the
small RNA sperm population, a recent study indicates that
long non-coding RNA could also acts as vectors of pater-
nal epigenetic inheritance [108]. Hence, altogether these
studies indicate that sperm small RNA is a pivotal paternal
epigenetic vector involved in intergenerational inheritance
of diet-induced metabolic disorders.

Potential reversibility of the newly established epigenetic
modifications

The advantage of epigenetic alterations over genetic mu-
tations is their potential reversibility [144]. Based on this
property, a number of recent experimental studies aimed
to demonstrate the reversibility of newly environmental-
induced epigenetic modifications. Thus, not only meta-
bolic pathologies but also psychiatric disorders can be
epigenetically inherited through the father, they appear
to be partially prevented via diet/exercise/environmental
intervention in fathers [112] [143, 145, 146]. However,
these studies have been performed in rodent experimen-
tal models and there is a strong need to expand research
on population-based data in order to enhance preven-
tion strategies. To date, only Barres’ study has raised this
issue [13]. In an obese and overweight human cohort, it
was firstly demonstrated that environmental stress, such
as obesity, might induce epigenetic changes in human
spermatozoa. Notably, they, showed that sperm DNA
methylation and RNA profiles are different between
obese and lean men. More so, they noticed a significant
deregulation of piRNA expression. Moreover, they
showed in a specific cohort of obese men before and
after surgery-induced weight loss a change in sperm
methylome. This suggests the reversibility of newly
sperm epigenetic diet-induced modifications.

Conclusions
There is a growing body of evidence supporting that
obesity negatively affects sperm quality. Epigenome and



Raad et al. Basic and Clinical Andrology (2017) 27:20

small non-coding RNAs alterations in sperm of obese in-
dividuals were found to have a significant impact on
male fertility potential and the health of the progeny.
Owing to the reversibility of such alterations, obese pa-
tients are often encouraged to lose weight before being
recommended a medical procedure. However, some
doubts might be raised about the assumption that a bal-
anced diet could totally or partially reverse epigenetic
and small non-coding RNAs alterations.
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