Hadziselimovic et al. Basic and Clinical Andrology (2019) 29:18
https://doi.org/10.1186/s12610-019-0097-3 Basic and Clinical Andro|ogy

RESEARCH ARTICLE Open Access

Testicular expression of long non—coding @
RNAs is affected by curative GnRHa
treatment of cryptorchidism

Faruk Hadziselimovic'", Gilvydas Verkauskas?, Beata Vincel® and Michael B. Stadler*’

updates

Abstract

Background: Cryptorchidism is a frequent endocrinopathy in boys that has been associated with an increased risk
of developing testicular cancer and infertility. The condition is curable by combined surgery and hormonal
treatment during early pre-pubertal stages using gonadotropin releasing hormone agonist (GnRHa). However,
whether the treatment also alters the expression of testicular long non-coding RNAs (IncRNAs) is unknown. To gain
insight into the effect of GnRHa on testicular INcCRNA levels, we re-analyzed an expression dataset generated from
testicular biopsies obtained during orchidopexy for bilateral cryptorchidism.

Results: We identified EGFR-AST, Linc-ROR, LINC00221, LINC00261, LINC00282, LINC00293, LINCO0303, LINCO0898,
LINC00994, LINCO1121, LINCO1553, and MTOR-AST as potentially relevant for the stimulation of cell proliferation
mediated by GnRHa based on their direct or indirect association with rapidly dividing cells in normal and
pathological tissues. Surgery alone failed to alter the expression of these transcripts.

Conclusion: Given that INcRNAs can cooperate with chromatin-modifying enzymes to promote epigenetic
regulation of genes, GnRHa treatment may act as a surrogate for mini-puberty by triggering the differentiation of
Ad spermatogonia via INncRNA-mediated epigenetic effects. Our work provides additional molecular evidence that
infertility and azoospermia in cryptorchidism, resulting from defective mini-puberty cannot be cured with successful
orchidopexy alone.
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Résumé

Contexte: La cryptorchidie est. une endocrinopathie fréquente chez les garcons. Elle est. associée a un risque élevé
de cancer des testicules et d'infertilité. La cryptorchidie peut étre soignée par une thérapie incluant une
intervention chirurgicale et un traitement hormonal par 'agoniste de I'normone GnRH. Alors que l'effet de la
thérapie sur I'expression des ARNm a été analysé, ses conséquences pour la transcription des longs ARNs non
codants (ARNInc) testiculaires restent inconnues. Afin de mieux comprendre les effets du GnRHa sur les
concentrations cellulaires des ARNInc dans le testicule, nous avons analysé des données d'expression d’ARN par
séquencage (ARN-Seq) générées en utilisant des biopsies testiculaires obtenues dans le cadre d'une orchidopexie
pour cryptorchidie bilatérale.
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I'expression de ces ARNInc.

Résultats: Nous avons identifié les ARNInc EGFR-AS1, Linc-ROR, LINC00221, LINC00261, LINC00282, LINC00293,
LINC00303, LINCO0898, LINC00994, LINCOT1121, LINCO1553, et MTOR-AST comme potentiellement pertinents pour la
stimulation de la prolifération cellulaire induite par le GnRHa. Cette conclusion fait référence a leur association
directe ou indirecte avec la croissance et division cellulaire mitotique rapide dans les tissus normaux et
pathologiques. Nous constatons également que la chirurgie seule na pas d'effet détectable par ARN-Seq sur

Conclusion: Etant donné que certains ARNINc coopérent avec des enzymes ayant un effet sur la structure
chromatinienne et la régulation épigénétique des génes, le traitement par GnRHa pourrait substituer la mini-puberté
en déclenchant la différenciation des spermatogonies Ad par un mécanisme épigénétiques qui dépendrait des ARNInc.
Notre travail révele des nouvelles pistes moléculaires soutenant I'hypothese que l'infertilité et 'azoospermie associées
avec la cryptorchidie sont la conséquence d'une anomalie de la mini-puberté. Cela explique pourquoi une thérapie
efficace de cette pathologie ne nécessite pas seulement I'orchidopexie mais aussi un traitement hormonal.

Mots-clés: Spermatogéneése, cryptorchidie, GnRHa, ARNInc, ARNInc antisense, mitose

Introduction

Long non-coding RNAs (IncRNAs) have emerged as key
regulators of gene expression in embryonic stem-cell (ESC)
self-renewal and differentiation. In ESCs, IncRNAs are reg-
ulated at the genetic level by transcription factor binding to
IncRNA gene promoters. A major function of IncRNAs is
the regulation of specific gene expression at multiple steps,
including the recruitment and expression of basal transcrip-
tion machinery, post-transcriptional modifications, and
epigenetics [1]. LncRNAs have also been proposed to play a
targeting role by binding to certain methyltransferases and
demethylases, and directing them to specific genomic loca-
tions. Depending on the biological context, certain methyla-
tion events are stably maintained (e.g., methylation involved
in inheritance through mitosis of a silenced heterochroma-
tin state), whereas others have to be amenable to change
(e.g., when cells differentiate or respond to environmental
cues) [2-5]. The so-called natural antisense transcripts
(NATSs) have been shown to regulate gene expression by
affecting transcription and mRNA stability [2-5]. Almost
80% of the mammalian genome is transcribed, and many
genomic loci produce RNAs from both sense and antisense
DNA strands [6—8], though the functional importance of
most of these transcripts is only poorly characterized.

We have previously demonstrated that the presence of
type A dark (Ad) spermatogonia in the testis is a marker of
low infertility risk (LIR), whereas low or absent levels (below
a critical threshold) indicate high infertility risk (HIR) [9, 10].
Treatment with a gonadotropin-releasing hormone agonist
(GnRHa, buserelin) enables the Ad spermatogonia popula-
tion to recover, significantly improving fertility in HIR pa-
tients [11]. GnRHa induces a broad transcriptional response,
including genes encoding proteins involved in pituitary
development, the hypothalamic-pituitary-gonadal axis, and
testosterone synthesis [12]. Earlier work focused on protein-
coding mRNAs; consequently, nothing is known about the
expression of IncRNAs in the treatment of cryptorchidism.

We identified several hundred GnRHa-responsive
IncRNAs, which were grouped into long intergenic
non-coding RNAs (lincRNAs) and antisense (AS)
IncRNAs. We selected candidates on the basis of
their expression profiles and then prioritized them
for roles in cell growth, differentiation, and disease
based on a literature search in PubMed (www.ncbi.
nlm.nih.gov/pubmed/). We also included in this
search protein-coding genes located upstream or down-
stream lincRNAs and sense genes overlapping AS-
IncRNAs. In addition, we explored the RNA-RNA inter-
action data available in the RISE database (http://rise.life.
tsinghua.edu.cn). Finally, we interpreted IncRNA expres-
sion signals in the context of protein/RNA profiling data
published by the Human Protein Atlas (www.proteinatlas.
org) and RNA-sequencing data from HIR/LIR patients [12].
We propose that certain hormone-responsive IncRNAs
may play a role in establishing adult spermatogenesis
during pre-pubertal stages of development by controlling
testicular cell proliferation.

Materials and methods

Study population and biopsy sample collection

The samples used in this study have been described
elsewhere [12-14]. A cryptorchid testis is defined as a
testis localized outside of the scrotum and incapable of
being brought into a stable scrotal position. Sixteen
boys with isolated bilateral cryptorchidism who under-
went orchidopexy were prospectively included in this
study (Fig. 1). The patients had a median age of 18.5
months (range 8-59 months). During the first orchido-
pexy, biopsies of the ipsilateral testicle were obtained
from all patients. Based on histological evaluation, bi-
opsies were categorized into two groups, Ad- (or HIR)
and Ad+ (or LIR),. The Ad- group included biopsies
with no Ad, and the Ad+ group included testes with Ad
spermatogonia (Fig. 1). Cryptorchid boys in the Ad-
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Fig. 1 Flow chart of the study design and the selection of patients and samples for RNA-sequencing based on expression profiling. High
infertility risk (HIR) and low infertility risk (LIR) patients are indicated. Classification is based on the absence (Ad-) or presence (Ad+) of

Ad spermatogonia

group had 8-times lower plasma LH levels (0.11IU/L)
than the Ad+ group (0.89IU/L, p <0.009), indicating
hypogonadotropic hypogonadism [13]. Five boys (Ad-
group) were randomly included in each arm. One HIR
patients was excluded (Fig. 1.) In the GnRHa-treated
group, the median total germ cell count per tubule (S/
T) increased from 0.11 to 0.42 (p = 0.03, paired-samples
Wilcoxon test, one-tailed). In the surgery only group,
the median S/T did not change and none of the testes
had Ad spermatogonia. In contrast, in the GnRHa
treated group, all testes completed the transition from
gonocytes to Ad spermatogonia (p =0.008; Fisher test,
2-tailed) [14].

RNA-sequencing data analysis

The workflow from RNA isolation to purification, library
preparation, sequencing, data analysis, and expression
level analysis has been described in detail elsewhere [12].
Determination of differentially expressed genes, statis-
tical analyses, and model design were carried out as
described previously [12]. Genomic coordinates for
known IncRNAs were obtained from the Bioconductor
package TxDb.Hsapiens.UCSC.hgl19.lincRNAsTranscripts
(version 3.2.2). Only genes with at least one read per mil-
lion, in at least two samples were included. P-values and
fold-changes were calculated for the treatment factor, and
differentially expressed genes were defined as those with a
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false discovery rate (FDR) of less than 0.05. Raw data files
are available at the Database of Genotypes and Phenotypes
(dbGaP) under accession number phs001275.v1.pl. Ex-
pression signals are given in standard RKPM units. They
are calculated as follows: the number of reads mapped to
a gene sequence is divided by the length of the gene se-
quence over 1000 multiplied by the total number of
mapped reads per sample over 1’'000°000.

LncRNA data interpretation

We analyzed lincRNA and AS-IncRNA expression in
cryptorchid patients with HIR before and after GnRH
treatment to identify all RNAs annotated as antisense (AS)
transcripts, as well as all RNAs annotated as lincRNAs
with logFC > 1.0. In addition, we compared lincRNA and
AS- IncRNA expression between the HIR and LIR groups
of cryptorchid patients and analyzed those with lower
expression in the HIR group. LincRNAs and AS- IncRNAs
were prioritized based on RNA-RNA interactions, reveal-
ing the IncRNAs, AS- IncRNAs, or mRNAs encoding
proteins involved in spermatogenesis or fertility, and im-
portant IncRNAs or mRNAs encoding proteins involved
in cell division/growth, signaling pathways, and cancer.
Furthermore, we included five lincRNA directly related to
spermatogenesis that had a log FC > 1.0. After the AS-
IncRNA candidates were identified, they were prioritized
based on a PubMed literature search of themselves and
their overlapping sense mRNA/protein, revealing roles in
spermatogenesis, fertility, cell division/growth, signaling
pathways, and cancer (www.ncbinlm.nih.gov/pubmed).
The RNA annotation was verified using Ensembl (www.
ensembl.org; release 97). The lincRNA/mRNA expression
was interpreted using GermOnline (www.germonline.org;
version 4.0), Human Protein Atlas (www.proteinatlas.org;
version 18), and Genevestigator (www.genevestigator.com;
version 7.3.1). Experimentally validated RNA-RNA inter-
action data were retrieved from RISE (http://rise.life.tsin-
ghua.edu.cn; version 1.0).

Results

Global effects on testicular IncRNA levels in response to
GnRHa treatment

First, we identified significantly differentially expressed
IncRNAs in duplicate testicular biopsies from LIR and
HIR patients who underwent surgical correction of un-
descended testis (Fig. 2, lanes 1-4).

Next, we compared samples obtained from HIR pa-
tients at the time of initial surgery (Fig. 2, lanes 5 and 6)
and after six months of treatment with GnRHa (Fig. 2,
lanes 7 and 8). The genes were ordered using an un-
supervised clustering method (hierarchical clustering
with complete linkage using Euclidean distances) and
are shown in a false-color heatmap relative to the mean
expression of each gene over all samples in Fig. 2. The
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results indicate that a large number of IncRNAs accu-
mulate at low levels in the testes of boys with HIR com-
pared to LIR, and that a substantial fraction of these
transcripts is up-regulated by GnRHa treatment. In con-
trast, surgery alone had no significant impact on IncRNA
expression. We explored the dataset using Volcano plots
that display statistical significance (false discovery rate,
FDR) against fold-change of expression signals allowing
the selection of genes for which large and significant dif-
ferences in expression levels were observed (Fig. 3).

We found that 627 and 38 IncRNAs were expressed at
lower and higher levels, respectively, in HIR versus LIR
samples (Fig. 3a). We concluded that the vast majority
of differentially expressed IncRNAs are detected at lower
levels in HIR testes. Comparing HIR testes before and
after GnRHa treatment, we found that 3074 IncRNAs
were increased, whereas 53 were decreased (Fig. 3b).
Thus, hormonal treatment induces a considerable num-
ber of IncRNAs. In the following section the novel
IncRNAs were organized based on their known func-
tions or roles that were attributed to their potential tar-
get genes.

Certain testicular lincRNAs upregulated by GnRHa
treatment are involved in stem cell renewal, signaling,
and cell differentiation

We also sought to gain insight into the potential roles
that hormone-responsive RNAs might play by interpret-
ing their genomic location, association with protein cod-
ing genes in sense/antisense pairs, and RNA-RNA
interactions. We selected 11 of 77 lincRNAs and four of
46 AS-IncRNAs with >2.0-fold change after GnRHa
treatment because their expression patterns lead us to
hypothesize that they are important for the development
of Ad spermatogonia (Table 1). In this section we focus
on novel potential regulatory lincRNAs and we provide
context information about their putative protein-coding
target genes. This includes previously published expres-
sion data obtained with samples from HIR and LIR pa-
tients (fold change and FDR values) [12] and functional
information relevant for germ cells growth and differen-
tiation from the literature.

LINC01016 is a so-called hub RNA that binds many
mRNAs (encoding epigenetic regulators and transcrip-
tion factors) and lincRNAs (including XIST). This fea-
ture distinguishes a hub RNA from most other
transcripts that interact with few, one or no other RNAs.
LINCO01016 is expressed in the same direction as MLN
(Motilin) and is a transcriptional target of the estrogen
receptor [15] (Table 1).

LINC01121 is expressed upstream of SIX2 and may in-
fluence its proximal promoter regions. SIX2 interacts
with TCF7L2 and OSRI in a canonical WNT signaling-
independent pathway, preventing the transcription of
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(See figure on previous page.)

Fig. 2 RNA-sequencing data for IncRNAs. A false color heatmap (red is high, blue is low) shows data from pairs of testes, analyzed. Horizontal
bars at the top indicate patient categories and age. Four sample from two HIR patients (p32 and p33; biopsy number) having had surgery “only”
treatment; line 1 and 2 during first surgery obtained from ipsilateral testis (1), line 3 and 4 show results from contralateral testis six months after
first orchidopexy (I) Buserelin treated patients p5 and p6; line 5 an 6 before treatment and line 7 and 8 contralateral testis after hormonal
treatment. Color scales for expression (red/blue) and age (green) are shown

differentiation genes in cap mesenchyme, such as WNT4
[16—18] (Table 1).

LINC00261 is expressed in the 3’regions of PAXI
and FOXA2, which encode transcription factors. It is
also a hub IncRNA that binds mRNAs and IncRNAs,
including HOTAIR, and is an epigenetically regulated
tumor suppressor that is essential for activation of
the DNA damage response [19]. FOXA2 is involved
in androgen receptor regulation [19-21] and upregu-
lated after GnRHa treatment (log2FC=1.69; FDR =
0.0004;). Furthermore, LINC00261 is a tumor suppres-
sor that blocks cellular proliferation by activating the
DNA damage response [22].

LINC00303 is expressed upstream of SOXI3, a de-
velopmental factor expressed in mouse Leydig cells
and germ cells [23]. Therefore, this IncRNA could be
involved in SOXI13 regulation. LINC00293 is expressed
upstream of SPIDR, which is involved in double-
stranded break repair and genome integrity and binds
two TTTY type testis-specific IncRNAs. Several lincRNAs
involved in DNA damage repair were increased after
GnRHa treatment, including LINC00994 (expressed

upstream of PSMD6), LINC00898 (binds mRNA encoding
USP1), and testis-specific LINC01553 (interacts with
mRNA encoding TIMELESS). TIMELESS plays an import-
ant role in the control of DNA replication, the mainten-
ance of genome stability throughout normal DNA
replication, and regulation of the circadian clock [24].
(Table 1).

EGFR-AS1, which is involved in determining period
length and in the DNA damage-dependent phase advan-
cing the circadian clock [25], interacts with NEU3
mRNA. NEU3 activity enhances EGFR activation with-
out affecting EGFR expression. This may indicate a regu-
latory mechanism involving a feedback loop. EGFR-AS1
is weakly expressed in adult testis and highly expressed
in liver and liver cancer. Intense EGFR immunostaining
was found in men with high plasma FSH levels and in all
patients who received exogenous FSH, supporting a pos-
sible gonadotropin role in the modulation of EGFR ex-
pression [25]. GnRHa treatment increased the plasma
FSH level and EGFR-ASI, but decreased EGFR expression
(log2FC = - 0.58; FDR =0.01;). Epidermal growth factor
receptor signaling is associated with the pathogenesis of
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Fig. 3 Volcano plots of INcRNA expression ratios: (a) Between the high (HIR) and low infertility risk (LIR) groups or (b) in the HIR group before and
after GnRHa treatment. Genes with no significant difference in expression between the two groups compared in each panel are in black.
Differentially expressed genes are shown in red. The most upregulated genes on the right, the most downregulated genes on the left, and the
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Table 1 Testicular lincRNAs and AS-IncRNAs that increase after GnRHa treatment and are involved in stem cell renewal and

differentiation

Gene ID RPKM before GnRHa RPKM after GnRHa log2FC GnRH p-value FDR
Median MAD Median MAD
LINC-ROR 0.044 / 0.06 040/ 024 2,68 0,0004 0,002
LINC00261 0.11 /004 1.11 /068 260 3.588E-08 4.35E-06
LINC00293 0.05/0.04 0.66 / 049 2.80 0.0001 0.001
LINC00303 0.22 /007 125/ 045 257 0.0001 0.0008
LINC00520 0.15 /007 0.79 /064 276 0.0002 0.001
LINC00898 0.04 /0.03 0.35/0.25 2.72 0.0002 0.001
LINC00974 0.07 / 0.04 048 /046 39 0.0008 0.003
LINC00994 020/0.10 141/ 081 273 5.773E-06 0.0001
LINCO1016 0.15/0.03 1.32/0.70 3,36 2.078E-09 6.43E-07
LINCOT121 0.25/0.04 1.84 /045 2.89 2.049E-09 6.43E-07
LINC01553 0.09 / 0.06 1.26 / 067 3.60 0.0002 0.001
EGFR-AST 0.03 / 0.05 0.58 /030 299 3.850E-07 2.28E-0.5
HOTTIP 0.04/0.03 047 /037 2.22 0.0010 0.004
MTOR-AST 021/0.19 1.90 /133 4.96 6.67E-06 0.0001
OTX2-AS1 0.09 / 0.007 091 /045 2.37 2.95E-0.6 8.83E-05

The log-fold changes (FC), p-value, false discovery rate (FDR), median expression values in reads per kilobase per million (RPKM) (Median), and the median
absolute deviation (MAD) for LINC samples before and after GnRHa treatment are given

cutaneous squamous cell carcinoma. LINC00520-targeted
EGFR inhibition might result in inactivation of the PI3K/
Akt pathway, thereby inhibiting cancer development [26].

HOTTIP mediates the regulation of CXCL genes, which
are implicated in Ad spermatogonia differentiation [12].
HOTTIP is antisense to HOXAI13 and modulates cancer
stem cell properties in human pancreatic cancer by regulat-
ing HOXA9 [27, 28]. OTX2-AS1 is a NAT RNA that plays
an important role in eye development and exhibits se-
quence complementarity to the exon sequences in its corre-
sponding sense gene, OTX2, in both mice and humans
[12]. OTX2 is downregulated in HIR (log2FC=-1.73;
FDR=0.02;) and upregulated after GnRH treatment
(log2FC = 1.24; FDR = 0.03) [12]. Though no role has been
found for OTX2-AS1, deletion of its sense gene OTX1
was found in six patients with genitourinary defects.
Three of these individuals were diagnosed with crypt-
orchidism [29]. MTOR, the key regulator of spermato-
genesis [30], is downregulated in boys with HIR
(log2FC = - 0.42; FDR = 0.03;) and remains downregulated
after GnRHa treatment (log2FC = - 0.53; FDR = 0.02;). Its
antisense gene, MTOR-AS1, was up-regulated 4.9-log2 by
GnRHa treatment (Table 1). Thus far, nothing is known
about the function of MTOR-ASI.

LINC-ROR is induced 6.5-fold by GnRHa. (Table 1) This
IncRNA controls stem cell renewal and acts as an miRNA
sponge via gene silencing, which indicates that the tran-
script itself has a biological role [31-33]. In addition, we
found that BODIL2, a testis-specific gene, is located

downstream of LINC-ROR and may be transcriptionally
regulated by the IncRNA. BODI1L2 plays a role in chromo-
some biorientation through the detection or correction of
syntelic attachments in mitotic spindles [34, 35]. Buserelin
treatment increases BODIL2 gene expression (log2FC =
1.721; FDR = 0.003;), indicating a possible role for it in Ad
spermatogonia differentiation.

LincRNAs downregulated in HIR testes and stimulated
after GnRHa treatment are associated with cancer and the
transition of ad spermatogonia

We previously reported different IncRNA expression in
patients with HIR compared to LIR; some of these RNAs
participate in epigenetic processes, including AIRN,
ERICH-AS1, FENDRR, HAGLR, and XIST [12]. Here, we
focuse on seven IncRNAs with decreased gene expression
in HIR, indicating abrogated mini-puberty, and increased
expression after GnRHa treatment (Tables 2 and 3).

LINC00922 is expressed upstream of cadherins
CDH5 and CDHII; the latter encodes a calcium-
dependent cell adhesion protein that may play a role
in testicular architecture [36].

LINC00221 binds mRNA encoding DCBLD2, which is
involved in negative regulation of cell growth. Significant
downregulation of DCBLD2 occurred after GnRHa
treatment (log2FC = - 1.0; FRD = 0.0002;). LINC00221 inter-
acts with VPS53's mRNA. The protein acts as component of
the GARP complex involved in retrograde transport from
early and late endosomes to the trans-Golgi network [37].
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Table 2 Testicular lincRNAs downregulated in HIR testes
compared to LIR

[iNCRNA LIR HIR log2FC  p-value  FDR
Median/MAD  Median/ MAD
LINC00922 047 017 0.10 0.07 - 147 0.002 0.01
LINC00221 064 0.27 027 0.07 -120 0.0007  0.008
LINC0O1249 043 0.28 0.15 0.08 -142 0.001 0.01
LINCO0701 029 0.03 0.11 0.06 -084 0002 0.02
HOTAIR 049 0.23 0.13 0.09 -174 00001  0.002
DLX6-AST 042 0.09 0.20 0.06 -092 0.006 0.03
LINCO1446 057 0.09 031008 -1.21 0.0002  0.003

The log-fold changes (FC), p-value, false discovery rate (FDR), median
expression values in reads per kilobase per million (RPKM) (Median), and the
median absolute deviation (MAD) for LINC samples are presented

LINCO01249 is expressed upstream of SOX11, which is
important for embryonic neurogenesis and tissue model-
ing. SOXI1 is upregulated after GnRHa treatment
(log2FC = 0.7; FDR = 0.008). It has been suggested that, to-
gether with SOX4, SOX11 may function as a transcriptional
repressor in fetal testes, contributing to the precise regula-
tion of SRY and SOX9 [23].

LINC01446 promotes glioblastoma progression by
modulating the miR-489-3p/TPT1 pathway [38].

The testis expression of LINC00701 is developmental
stage-specific and associated with SLC25A37, encoding a
solute carrier localized in the inner mitochondrial mem-
brane. The protein functions as an essential iron im-
porter for the synthesis of mitochondrial heme and iron-
sulfur clusters [39].

HOX antisense intergenic RNA (HOTAIR) is an IncRNA
that coordinates with chromatin-modifying enzymes, reg-
ulates gene silencing, and is transcriptionally induced by
estradiol (E2) [12, 40, 41].

Distal-less homeobox6 antisense (DLX6-AS1) was
downregulated in HIR and responded positively to
GnRHa treatment. This supports the observation in
mice that DLX6 participates in the control of ste-
roidogenesis [42]. DLXS5 and DLX6 showed low or no
expression in HIR samples.
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TINCR, an IncRNA required for the induction of key
differentiation genes, is downregulated in HIR testes
(log2FC = - 1.07 I; FDR =0.002). Seven epigenetic modi-
fiers found to bind TINCR were upregulated in HIR and
downregulated after GnRHa treatment (Table 4).

Discussion

In this study, we aimed to gain molecular insight into
the effect on testicular IncRNA expression levels of a
curative treatment for cryptorchidism and related infer-
tility that combines surgery and nasal administration of
GnRHa [11, 12, 14]. We found hundreds of IncRNAs
that respond to treatment, including a subset that is
present at lower levels in testicular samples from boys
with HIR. A detailed interpretation of the expression
data revealed candidate IncRNAs that may play import-
ant regulatory roles in establishing adult spermatogen-
esis during early postnatal development in humans. Our
data are consistent with the hypothesis that hypogona-
dotropic hypogonadism in boys with altered mini-
puberty is the consequence of a profoundly altered gene
expression program involving protein-coding genes and
IncRNAs. The results point to molecular mechanisms
that underlie the ability of GnRHa to rescue fertility.

Study design for human testicular RNA profiling
experiments

When working with human samples, a critical issue is
the number of cases included in a given analysis. The
number of replicates affects the statistical confidence
level, and human tissue samples exhibit intrinsic vari-
ability that needs to be controlled. In this exploratory
IncRNA profiling study, we included first seven patients
chosen sequentially from a study based on randomized
patient samples [12, 14]. Their inclusion in the cohorts
to be treated or to remain untreated was completely un-
biased by any parameter other than undescended testes,
which were surgically corrected. This sample size, while
small, is enough for an initial transcriptome study as
presented here.

Table 3 LncNRAs downregulated in HIR testes and stimulated after GnRHa treatment

lincRNA (RPKM) before GnRHa after GnRHa log2FC p-value FDR
Median MAD Median MAD

LINC00922 0.10 0.07 0.85 040 141 0.02 0.04
LINC00221 0.27 0.07 1.12 042 1.23 0.01 0.03
LINC01249 0.15 0.08 092 0.56 1.38 0.003 0.01
LINC00701 0.11 0.06 0.72 048 1.28 0.0009 0.003
HOTAIR 0.13 0.09 1.04 087 1.14 0.01 0.03
DLX6-AST 0.20 0.06 1.13 081 2.02 1.55E-05 0.0002
LINCO1446 031 0.08 149 0.82 1.14 0.0007 0.003

The log-fold changes (FC), p-value, false discovery rate (FDR), median expression values in reads per kilobase per million (RPKM) (Median), and the median
absolute deviation (MAD) for LINC samples before and after GnRHa treatment are shown
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Table 4 Seven epigenetic modifiers that bind TINCR
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Gene ID Name Log2FC HIR/LIR FDR Log2FC FDR
HIR/LIR HIR/ GnRHa HIR/ GnRHa

SETD7 SET domain containing lysine methyltransferase 7 +0.22 0.042 —-0.85 0.0006
ARID4B AT-rich ineraction domain 4B +0.18 0.041 -0.63 0.008
ARID5B AT-rich interaction domain 5B +035 0.004 -049 0.003
KDMG6A lysine demethylase 6A +0.20 0017 —-0.81 0.0009
CHD6 chromodomain helicase DNA binding protein 6 +0.21 0.040 -0.54 0.03

MBD2 methyl-CpG binding domain protein 2 +0.23 0.029 -0.68 0.004

BPTF bromodomain PHD finger transcription factor +0.19 0.055 -0.61 0.01

The log-fold changes (FC), p-value, false discovery rate (FDR), comparing HIR and LIR cryptorchid testes as well as results from HIR group following GnRHa

treatment are presented

Curative hormone treatment affects signaling pathways

During GnRHa treatment, increased LH and testoster-
one secretion induced the transition of gonocytes and
undifferentiated spermatogonia into Ad spermatogonia.
In this context, it is interesting that the expression of
LINC-ROR, a key regulator of pluripotent stem cell
reprogramming, increased after hormone treatment.
LINC-ROR influences cell differentiation, in part, by
acting as a sponge for miR-138 and miR-145 and by
activating both the canonical and non-canonical WNT/
B-catenin signaling pathways [31]. Importantly, an in-
crease in mTOR-ASI expression after GnRHa treatment
may have resulted in the suppression of mTOR activity,
allowing spermatogonial stem cells to undergo self-
renewal. WNT3 induces many transcription factors asso-
ciated with mesoderm and is downregulated in the testes
of men with HIR testes [12]. WNT interacts with mTOR
signaling to affect cancer cell growth and tumor metab-
olism [43], as well as the formation of spermatozoa [30].
We propose that WNT3 is the signaling component that
regulates early expression of Brachyury (T) [44], a meso-
dermal factor known to determine the fate of Ad sperm-
atogonia. T is a classical and conserved mesodermal
factor essential for robust activation of the germline de-
terminants PRDM1 and PRDM1I14 [45]. T directly upre-
gulates these genes, thereby delineating the downstream
primordial germ cell program. In mutant mice lacking
Bmp4, a program induced by WNT3 prevents T from
activating PRDM1 and PRDM14, demonstrating a per-
missive role of Bmp4 in primordial gem cell specification
[45]. We found that DMRTC2, PAX7, T, and TERT are
downregulated in testes with defective mini-puberty and
respond to GnRHa treatment [46]. Furthermore, we
found lower levels of PRDMI, PRDM6, PRDMSY,
PRDM13, and PRDM14 mRNA in the testes of patients
with HIR compared to LIR, and PRDM?7, PRDMO,
PRDM12, and PRDM16 were significantly induced after
GnRHa treatment. Thus, GnRHa treatment induces an
alternate pathway to stimulate PRDM9 for Ad spermato-
gonia specification without the permissive role of BMP4,

but increased the expression of BMPS5 (log2FC =2.31;
FDR =0.0001;) [12, 47]. LINCO01121 is expressed upstream
of SIX2 and may therefore influence its expression. SIX2
and WNT regulate the self-renewal and commitment of
nephron progenitors through shared gene regulatory net-
works [16—18]. SIX2 also activates the expression of GDNF
and plays a role in cell proliferation and migration. Testes
in men with HIR expressed lower levels of SIX2 than LIR
testes (log2FC = - 1.76; FDR =0.0008). GnRHa treatment
increased SIX2 (log2FC =1.61; FDR=0.014) and GDNF
(log2FC = 1.46; FDR =0.003) expression. Taken together,
our results support the notion that LINC-ROR and mTOR
are involved in Ad spermatogonia development and specifi-
cation via the WNT signaling pathway.

Hormone treatment influences epigenetic factors
LINC00261 stimulates the expression of HOTAIR and
HOTTIP genes to stabilize androgen receptor (AR) to-
gether with FOXAI. Specifically, the DNA-binding
domain (DBD)/hinge region of AR directly interacts with
the fork head domain of FOXAI, thereby acting as an
AR-collaborating factor [48].

HOTAIR’s promoter contains multiple functional estrogen
response elements (EREs). HOTAIR mediates the recruit-
ment of H3K27 methyltransferase and H3K4 demethylase,
which leads to efficient repression of certain loci. The levels
of histone H3 lysine-4 trimethylation, histone acetylation,
and RNA polymerase II recruitment are increased at the
HOTAIR promoter in the presence of E2, and knock-down
of ERs downregulated E2-induced HOTAIR expression.
Thus, like the transcription of protein-coding genes, E2 in-
duces the transcription of antisense RNAs [27, 49, 50]. HIR
patient’s exhibit decreased HOTAIR levels, [12] and GnRHa
treatment induced HOTAIR expression, indicating that LH,
testosterone and/or converted E2 have a positive effect on
HOTAIR and, thus, Ad spermatogonia differentiation [12].
Furthermore, HOTAIR was previously shown to medi-
ate tumorigenesis by recruiting EZH2 [51]. This is of
interest, as GnRHa induces expression of HOTAIR,
downregulates EZH2 (log2FC = - 0.6; FDR =0.01) and
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implicates the regulation of HOTTIP gene transcrip-
tion, which then transcriptionally regulates the HOXA
cluster. As a result, an increase occurs in HOXA2
(log2FC =2.38; FDR =0.007), HOXA3 (log2FC = 1.68;
FDR = 0.007), HOXAI1I (log2FC = 1.77; FDR = 0.02), and
HOXA-AS3 (log2FC = 2.68; FDR = 0.0001).

Gamma-aminobutyric acid (GABA) plays a key devel-
opmental role in the regulation of GnRH neuron migra-
tion from the olfactory placodes into the forebrain
during fetal development [52], and co-expression of
DLX3 and PAX6 proteins, correlates with acquisition of
the olfactory placode fate [53]. Moreover, GABA-A re-
ceptors and GABA transporter 1 (GATI) have been re-
ported to be involved in the proliferation of Leydig cells,
testosterone production, and spermatogenesis [54].
GABRA 3 (log2FC = - 2.49; FDR =0.0001;) and GABR5
(log2FC = - 2.59; FDR =0.0006;) were downregulated in
HIR testes. Following GnRHa treatment, an increase ex-
pression was observed in DLX3, PAX6 [12], and TP63
(log2FC=0.91; FDR =0.002;), whereby the latter was
downregulated in HIR (log2FC = - 1.58; FDR =0.001;).
Berghoff et al. proposed a model in which DLX6-AS1 in-
hibits the ultraconserved DNA methylation mark in
DLX5/6, facilitating antagonistic interactions between re-
pressive and activating transcription factors MECP2 and
DLX [53]. DLX2, DLX3, DLX5 and DLX6 showed low or
no expression in HIR samples [12] Loss of DLX1/2
increases site-specific methylation of the DLX5/6 ultra-
conserved enhancer [53]. Tp63 regulates DLX5 and
DLX6 transcription, at least in part, via cis-acting regula-
tion at the promoter level [55]. These interactions allow
differential control of adjacent genes by shared DNA
regulatory elements [56]. It was also shown that deletion
of DIx5 and DIx6 in the mouse leads to decreased testos-
terone levels and an abnormal masculinization pheno-
type [42]. Thus, impaired steroidogenesis during mini-
puberty in HIR boys may be induced by altered
GABRA-A receptor signaling, silenced DLX6 expression
as well as destabilization of AR and ERs.

GnRHa treatment affects genes associated with normal
and pathological cell division

Several recent studies have reported roles for IncRNAs
in cancer, including MALATI and GAS, strongly indicat-
ing that IncRNAs not only control gene regulatory path-
ways in normal cells and tissue, but also during tumor
development [57, 58]. The occurrence and progression
of cancer is the result of a combination of multiple fac-
tors. Furthermore, cancer-specific IncRNA expression
patterns appear to be more tissue- and stage-specific
than those of protein-coding genes, supporting the po-
tential development of IncRNAs as efficient biomarkers
and therapeutic targets [58]. Interestingly, GnRHa treat-
ment increased LH and testosterone secretion and
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HOTAIR expression, and probably its recruitment to
chromatin, whereas the expression of MALATI was
reduced (log2FC = -0.64; FDR =0.03; REF), suggesting
opposite regulation and functions of these IncRNAs dur-
ing normal testis development. It was reported that
LINC-ROR promote liver cancer stem cell growth by
upregulating TERT and C-MYC [59]. Notably, GnRHa
treatment stimulates the expression of TERT (log2FC =
0.91; FDR=0.002;) [46], which is decreased in HIR
(log2FC = - 1.58; FDR =0.001;) [46] but downregulates
C-MYC signaling (log2FC = - 0.58; FDR = 0.01;).

Variation in lincRNA expression may be associated with
cancer progression. For example, LINC00261, which plays
an important role in gastric cancer, is stimulated by
GnRHa, and exerts tumor suppressive activity by reducing
cancer cell invasion via suppression of the epithelial-
mesenchymal transition process [60]. Another lincRNA,
TINCR, is involved in normal tissue differentiation and
plays a critical role in cancer and metastasis. TINCR expres-
sion is downregulated in HIR (log2FC=-1.07; FDR =
0.002;) [12]. We observed that TINCR depletion in HIR tes-
tes resulted in the induction of key epigenetic modifiers,
seven of which were downregulated following GnRHa
treatment (Table 4). One of them, SETD?, is an epigenetic
modifier and regulates AR [61]. SETD7 binds TINCR and
may mediate the formation of AR-associated coactivator
complexes. Taken together, the results indicate that the
HIR group of cryptorchid boys with abortive mini-puberty
expresses several cancer genes. Gonadotropin-releasing
hormone treatment may protect against testicular tumor
development by downregulating oncogenes, such as
MALATI, mTOR, C-MYC, and EZH2 to enable normal
germ cell development.

Conclusions

Two major goals in the field of male reproductive biol-
ogy are to elucidate the molecular mechanisms that
underlie cryptorchidism and to develop an effective
treatment for its long-term consequences. According to
the mini-puberty hypothesis, early-life exposure to go-
nadal hormones during a specific window of sensitivity
triggers sex-specific developmental processes. To pre-
serve molecular features of differentiated cells, it is cru-
cial that transcriptional alterations triggered by external
or intrinsic signals continue beyond the initial stimulus.
One possible mechanism involves epigenetic histone
variant replacement, chromatin remodeling factors, and
IncRNAs associated with epigenetic factors. We found
that many of the lincRNAs responding to GnRHa treat-
ment are associated with somatic cancer. This may re-
flect the fact that the hormone stimulates germ stem cell
growth and Leydig, as well as Sertoli, cell division. The
mechanisms involved are likely rather diverse and may
include promoter/enhancer activity, miRNA sponge
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activity, or control of gene expression via RNA-RNA in-
teractions. We propose that the IncRNAs identified in
this study may be involved in establishing normal male
fertility by acting at early stages of spermatogonia stem
cell development and by affecting other testicular cells
capable of responding to GnRHa treatment. Our results
provide information’s for further functional analysis of
long-noncoding RNA in relation to the infertility devel-
opment. We propose that the HOTAIR and DLX path-
ways, as well as both canonical and non-canonical WNT
pathways, are involved in Ad spermatogonia growth and
differentiation.
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