Skip to main content
  • Endocrinologie
  • Published:

La puberté surrénalienne

Adrenal puberty or adrenarche

Resume

La surrénale produit surtout des stéroïdes de la voie Δ5, la déhydroépiandrostérone (DHA) et son sulfate (DHAS). Leurs taux très élvés à la naissance, décroissent rapidement les premiers mois de vie, et sont très bas de 1 à 6 ans. Ils augmentent abruptement vers 7–8 ans dans les deux sexes, et vers 9–11 ans, avant tout signe de puberté gonadique, DHA et DHAS ont augmenté d'un facteur 10 et 20 respectivement, alors que la sécrétion du cortisol ne change pas. C'est la période pré- et parapubertaire des changements de biosynthèse des androgènes surrénaliens que l'on individualise commepuberté surrénalienne ouadrénarche. Elle est contemporaine du développement progressif de la zone réticulée du cortex surrénal et de l'activation du complexe enzymatique 17α-hydroxylase/17,20-lyase (P450c17) au détriment de la 3β-hydroxystéroïde déshydrogénase. L'adrénarche est un phénomène caractéristique de l'espèce humaine. A l'exception du chimpanzé, elle ne s'observe chez aucun autre mammifère. Les facteurs responsables de l'adrénarche sont toujours mal connus. L'existence d'une régulation propre de la biosynthèse des androgènes a été postulée. Plusieurs hypothèses ont été invoquées (inhibition de la 3ß-ol par les œstrogènes ovariens, effet stimulant des gonadotrophines, de la GH ou de la prolactine) et réfutées à mesure que l'ontogénie des sécrétions pubertaires se précisait. L'ACTH est un facteur trophique indispensable à une sécrétion normale d'androgènes. La dissociation entre la réponse des sécrétions androgéniques et celle du cortisol à l'ACTH a fait suggérer l'existence d'un facteur additionnel à l'ACTH. L'hypothèse que le CASH (cortical androgen-stimulating hormone) soit un segment de la pro-opiomélanocortine attend confirmation. On a aussi invoqué l'effet des variations de gradient du cortisol intra-surrénalien. Les facteurs génétiques joueraient un certain rôle.

En terme de développement le rôle de l'adrénarche apparaît bien modeste. L'administration prolongée de DHAS ou de DHA chez des enfants présentant un retard d'adrénarche a montré qu'ils n'avaient pas de rôle déterminant sur la croissance somatique prépubertaire et le déclenchement de la puberté, et fait remettre en cause le concept classique qu'ils soient par eux-mêmes responsables de la pousse des poils sexuels. L'adrénarche peut être vue comme un index de maturation corporelle. En effet, la DHA est une pro-hormone, accessible au métabolisme périphérique dans un grand nombre de tissus, dont le cerveau. Un certain nombre de ses actions pourraient en dériver, en particulier celles qui sont liées à la lutte contre le vieillissement.

Enfin, des études épidémiologiques récentes suggèrent que des taux circulants bas de DHAS sont corrélés avec une augmentation du taux de morbidité cardio-vasculaire chez l'homme ou de cancer du sein chez la femme. Il n'est pas encore possible de conclure sur l'importance biologique de ces associations, et que les androgènes surrénaliens soient une fontaine de jouvence, d'autant que la DHA peut avoir un rôle tout à fait indirect sur ces effets anti-vieillisement en particulier par son métabolisme en estrogènes ou autres métabolites.

Abstract

The androgens produced by the adrenal glands are mainly Δ5 steroids, first dehydroepiandrosterone (DHA) and its sulfate (DHAS). Adrenal androgens, very high at birth, decrease rapidly the first few months of life, remaining very low from 1 to 6 years of life. Adrenarche is defined as the changes in the pattern of adrenal secretions which occur several years before the onset of gonadal puberty (gonadarche). Developmental patterns of adrenal androgens differ markedly among species and only the chimpanzee exhibits an adrenarche comparable to that of man. Adrenarche starts in both sexes around age 7. The increase in DHA/DHAS has a rather abrupt onset and is thereafter progressive. Before the onset of gonadarche mean levels of DHA and DHAS have increased by about 10 and 20 fold respectively. The prepubertal rise in plasma Δ5-androgens is accompanied by that of Δ4-androstenedione and 11β-hydroxy-Δ4-androstenedione occurring likely at about the same time but being very progressive and more modest are only significant after age 8 in both sexes. Adrenal androgens continue to rise during puberty. Plasma levels of DHA and DHAS continue to rise from pubertal stages 1 to 5 and remain similar in both sexes until age 15. At pubertal stage P5, plasma DHA levels are similar to that seen in young adults with no sex difference while that of DHAS continue to rise in boys and become significantly higher than in girls.

Developmental changes in adrenal androgen secretions are also observed in the response to ACTH stimulation. Whether estimated as absolute levels or Δ of response, the rise in all unconjugated adrenal androgens to a short or prolonged ACTH stimulation, is greater with increasing age, with no sex difference, and is somewhat correlated to basal levels. Plasma levels of DHAS do not vary significantly the 2 hours following a bolus injection of ACTH (21, 34) but its response to longterm (3-days) ACTH stimulation is also increasing with age. Morphological and functional changes in the adrenal cortex also occur during development. Focal development of aZona reticularis starts at 5 years of age, and progressively becomes continuous. The development of the zona reticularis is parallel to the increase in adrenal androgen secretions, and is completed only by age 15. This is accompanied by a rise in 17-hydroxylase and 17,20-desmolase activity in the adrenals.

In a normal timing of physiological events, the onset of adrenarche occurs several years before the onset of gonadarche, 2–3 years in girls and 3–4 years in boys. This relation does not preclude that the processes are independent events. Indeed, the onset of adrenarche and gonadarche are dissociated in a variety of disorders of sexual maturation

Adrenal androgen secretions are under the control of ACTH, as shown by a series of observations. However, the specific increase of adrenal androgen secretions during development without any detectable change in ACTH stimulation, the dissociation between adrenarche and gonadarche in several conditions, have led to postulate that the biochemical differentiation of the zona reticularis may require the action of an «adrenal factor» in addition to ACTH. Among the proposed «trophic» factors of adrenal androgen secretion, LH/FSH and estrogens are no longer believed to be involved. The evidences for the existence of a separate and specific pituitary cortical androgen-stimulating hormone (CASH) are not yet convincing. Prolactin, linked to nutritional status, may stimulate the activity of the adrenal hydroxysteroid sulfotransferase. The functional zonal theory» is attractive, but it does not explain why changes in adrenal androgens occur at a given age. Finally, the occurrence of familial cases of premature pubarche, the study of the changes in adrenal androgens in monozygotic or dizygotic twins and the observation that in idiopathic delayed puberty the delay in adrenarche is only one part of a generalized growth and developmental delay, strongly suggests that maturation of the adrenal cortex is regulated, at least in part, by genetic factors.

The physiological importance of adrenal androgens remains a matter of controversy. Classical “dogma” dictates that adrenal androgens are responsible for pubic hair development. It has also been suggested that they contribute to somatic growth or epiphyseal advancement in childhood.

This is mainly based on the observation that premature adrenarche is accompanied by premature pubarche, tall stature and advanced bone age. However, adequate androgen secretion alone does not ensure normal sexual hair development in many patients with gonadal dysgenesis. Moreover, in children with a lack or delayed adrenarche long-term treatment with DHAS at dosages such as to restore normal levels for age, failed to induce growth of sexual hair or any change in growth rate, bone maturation velocity, or to advance puberty. Although new hypotheses favour the view that Δ5-androgens, particularly Δ5-androstenediol, have some characteristic properties of estrogens, the physiological role of adrenal androgens, if any, remains to be established.

DHAS may well be only a prohormone. There are ample evidences that all tissues possess active sulfatases which transform it into DHA, a steroid with high turn-over. Administration of DHA to experimental animals has shown beneficial effects on various endocrine-metabolic parameters, enhanced immunoprotective functions and reduced carcinogenesis. DHA prevents diabetes in genetically diabetic and obese mice. The importance ofin vivo andin vitro experimental findings is underscored by epidemiological data showing that low DHA levels are correlated with increased cardiovascular morbidity in men, breast cancer in women and a decline in immune competence. Human studies are at the moment controversial. It remains possible that DHAS influence breast cancer risk earlier in life, and/or that there are more complex interactions with other hormones or the intracellular metabolism of DHA/DHAS. Indeed, the tissue concentrations of DHAS may be important since it may act indirectly via its metabolism into estradiol or other steroids. Further long-term studies are needed to conclude whether DHA/DHAS are a youth fountain.

References

  1. ADAMS J.B.: Control of secretion and the function of C19-Δ5 steroids of the human adrenal gland. Mol. Cell. Endocrinol., 1985, 41: 1–17.

    Article  PubMed  CAS  Google Scholar 

  2. AKAMINE Y., KATO K.I., IBAYASHI H.: Studies on changes in the concentrations of serum androgens in pubertal twins. Acta Endocrinol. (Kbh), 1977, 93: 356–364.

    Google Scholar 

  3. AKWA Y., MORFIN R.F., ROBEL P., BAULIEU E.E.: Neurosteroid metabolism: 7a-kydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem. J., 1992, 288: 959–964.

    PubMed  CAS  Google Scholar 

  4. AKWA Y., YOUNG J., KABBADJ K. et al.: Neurosteroids: biosynthesis, metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J. Steroid Biochem Mol. Biol., 1991, 40: 71–81.

    Article  PubMed  CAS  Google Scholar 

  5. ANDERSON D.C.: The adrenal androgen-stimulating hormone does not exist. Lancet, 1980, ii: 454–456.

    Article  Google Scholar 

  6. APTER D., PARKARININE A., HAMMOND G., VIHKO R.: Adrenocortical function in puberty. Serum ACTH, cortisol and dehydroepiandrosterone in girls and boys. Acta Paediat. Scand., 1979, 68: 599–604.

    Article  PubMed  CAS  Google Scholar 

  7. ATTANASIO A., ROBKAMP R., BERNASCONI S. et al.: Plasma adrenocorticotropin, cortisol and dehydroepiandrosterone response to corticotropinreleasing factor in normal children during pubertal development. Ped. Res., 1987, 22: 41–44.

    Article  CAS  Google Scholar 

  8. AUGUST G., HUNG W., MAYES D.: Plasma androgens in premature pubarche. J. Pediat., 1975, 87: 246–249.

    Article  PubMed  CAS  Google Scholar 

  9. BARRETT-CONNOR E., FRIEDLANDER N.J., KHAW K.T.: Dehydroepiandrosterone sulfate and sreast cancer risk. Cancer Res., 1990, 50: 6571–6574.

    PubMed  CAS  Google Scholar 

  10. BARRETT-CONNOR E., GOODMAN-GRUEN D.: The epidemiology of DHEAS and cardiovascular disease. Ann. N. Y. Acad. Sc, 1995, 774: 259–270.

    Article  CAS  Google Scholar 

  11. BARRETT-CONNOR E., KHAW K.T., YEN S.S.C.: A perospective study of dehydroepiandrosterone sulfate, mortality and cardiovascular disease. N. Engl. J. Med., 1986, 315: 1519–1524.

    PubMed  CAS  Google Scholar 

  12. BAULIEU E.E.: Neurosteroids: a new function in the brain. Biol. Cell., 1991, 71(1–2): 3–10.

    Article  PubMed  CAS  Google Scholar 

  13. BAULIEU E.E.: Studies on dehydroepiandrosterone (DHEA) and its sulphate during aging. C. R. Acad. Sci. [III], 1995, 318: 7–11.

    CAS  Google Scholar 

  14. BAULIEU E.E., CORPECHOT C., DRAY F. et al.: An adrenal secreted «androgen» «dehydroepiandrosterone sulfate». Its metabolism and a tempttve generalization on other steroids conjugantes in man. Recent Prog. Horm. Res., 1965, 21: 411–500.

    PubMed  CAS  Google Scholar 

  15. BELANGER A., CANDAS B., DUPONT A. et al.: Changes in serum concentrations of conjugated and unconjugated steroids in 40- to 80-year-old men. J. Clin. Endocrinol. Metab., 1994, 79: 1086–1090.

    Article  PubMed  CAS  Google Scholar 

  16. CASSON P.R., ANDERSEN R.N., HERROD H.G. et al.: Oral dehydroepiandrosterone in physiologic doses modulates immune function in postmenopausal women. Amer. J. Obstet. Gynecol., 1993, 169: 1536–1539.

    CAS  Google Scholar 

  17. COHEN H.N., BEASTALL G.H., WALLACE A.M., FOGELMAN I., THOMPSON J.A.: Clinical value of adrenal androgne mesauremnt in the daignosis of delayed puberty. Lancet, 1981, i: 681–692.

    Google Scholar 

  18. COHEN H.N., PATERSON K.R., WALLACE A.M. et al.: Dissociation between adrenarche and gonadarche in diabetes mellitus. Clin. Endocrinol. (Oxf), 1984, 20: 717–724.

    Article  CAS  Google Scholar 

  19. COMER K.A., FALAMY C.N.: Immunological characterization of dehydroepinadrosterone sulfotransferase from human live and adrenals. Mol. Pharmacol., 1992, 41: 645–651.

    PubMed  CAS  Google Scholar 

  20. COPELAND K.C., PAUNIER L., SIZONENKO P.C.: The secretion of adrenal androgens and growth patterns of patients with hypogonadotropic hypogonadism and idiopathic delayed puberty. J. Pediat., 1977, 91: 985–990.

    Article  PubMed  CAS  Google Scholar 

  21. COUNTS D.R., PESCOVITZ O.H., BARNES K.M. et al.: Dissociation of adrenarche and gonadarche in precocious puberty and in isolated hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab., 1987, 64: 1174–1178.

    PubMed  CAS  Google Scholar 

  22. CRAVE J.C., FIMBEL S., LEJEUNE H. et al.: Effects of diet and metfornin administration on sex hormone binding globulin, androgens, and insulin in hirsute and obese women. J. Clin. Endocrinol. Metab., 1995, 80: 2057–2062.

    Article  PubMed  CAS  Google Scholar 

  23. CUTLER JR G.B., DAVIS S.E., JOHNSON-BAUGH R.E., LORIAUX D.L.: Dissociation of cortisol and adrenal androgen secretion in patients with secondary adrenal insufficiency. J. Clin. Endocrinol. Metab., 1979, 49: 604–609.

    PubMed  Google Scholar 

  24. CUTLER JR G.B., GLENN M., BUSH M. et al.: Adrenarche: a survey of rodents, domestic animals and primates. Endocrinology, 1978, 103: 2112–2118.

    PubMed  CAS  Google Scholar 

  25. DEWAILLY D., GOUGEON E., BUVAT J. et al.: Elevation du DHA-S plasmatique au cours de l'hyperprolactinémie: effet de la dexaméthasone et de la ß1-24-corticotrophine. Rev. Franç. Endocrinol. Clin., 1985, 26: 53–58.

    Google Scholar 

  26. DHOM G.: The prepubertal and pubertal growth of the adrenal (adrenarche). Beitr. Pathol., 1973, 150: 357–377.

    PubMed  CAS  Google Scholar 

  27. DICKERMAN Z., GRANT D.R., FAIMAN C., WINTER J.S.D.: Intraadrenal steroid concentrations in man: zonal differences and developmental changes. J. Clin. Endocrinol. Metab., 1984, 59: 1031–1036.

    PubMed  CAS  Google Scholar 

  28. DUCHARME J.R., FOREST M.G., PERETTI de E. et al.: Plasma adrenal and gonadal sex steroids in human pubertal development. J. Clin. Endocrinol. Metab., 1976, 42: 468–476.

    PubMed  CAS  Google Scholar 

  29. FOREST M.G.: Age-related response of plasma testosterone, Δ4-androstenedione, and cortisol to adrenocorticotropin in infnats, children and adults. J. Clin. Endocrinol. Metab., 1978, 47: 931–937.

    PubMed  CAS  Google Scholar 

  30. FOREST M.G.: Control of the onset of Puberty. In: Crossignani P.G., Rubin B.L. eds Endocrinology of human infertility; New aspects. London, Academic Press, 1981: 267–306.

    Google Scholar 

  31. FOREST M.G.: Role des androgènes surrénaliens et des hormones sexuelles dans la croissance postnatale. In: Rochiccioli P. ed Facteurs endocriniens de croissance et leur pathologie. Paris, Doin, 1988: 115–136.

    Google Scholar 

  32. FOREST M.G.: Physiological changes in circulating androgens. In: Forest M.G. ed. Androgens in childhood, Pediatr. Adolesc. Endocrinol. vol 19. Basel, Karger, 1989: 104–129.

    Google Scholar 

  33. FOREST M.G.: Adrenal diseases and steroids. Curr. Opinion. Pediatr., 1990, 2: 775–785.

    Article  Google Scholar 

  34. FOREST M.G.: Adrenal function tests. In: Ranke M.B. ed. Diagnostic of endocrine function in children and adolescents. Heidelberg, Jonann Ambrosius Barth Verlag, 1996: 370–413.

    Google Scholar 

  35. FOREST M.G., PERETTI de E., BERTRAND J: Age related shifts in the response of plasma Δ4-and Δ5-androgens, their C-21 precursors and cortisol to ACTH, from infancy to puberty. In: Cacciari E., Prader A. eds. Pathophysiology of puberty. London, Academic Press, 1980: 137–155.

    Google Scholar 

  36. FOREST M.G., PERETTI de E., BERTRAND J.: Adrenarche et puberté: modification des hormones gonadiques et surrénaliennes. In: Rapports du XXXIVè Congrès de l'Association des Pédiatres de langue Française. Paris, L'Expansion Scientifique Française, 1975: 109–135.

    Google Scholar 

  37. FOREST M.G., PERETTI de E., BERTAND J.: Developmental pattern of the plasma levels of testosterone, Δ4-androstenedione, 17a-hydroxyprogesterone, dehydroepiandrosterone and its sulfate in normal infants and prepubertal children. In: James V.H.T., Serio M., Guisti M., Martini M. eds. The Endocrine function of the adrenal cortex. London, Academic Press, 1978: 561–582.

    Google Scholar 

  38. FOREST M.G., PERETTI de E., BERTRAND J.: Testicular and adrenal androgens and their binding to plasma proteins in the perinatal period: developmental patterns of plasma testosterone, 4-ene-androstenedione, dehydroepiandrosterone and its sulfate in premature and small for date infants as compared with that of full-term infants. J. Steroid Biochem., 1980, 12: 25–36.

    Article  PubMed  CAS  Google Scholar 

  39. FOREST M.G., PERETTI de E., DAVID M., Late onset 21-OH deficiency (21-OHD) can be misdiagnosed as «typical premature pubarche» (PP) in childhood. Pediatr. Res., 1985, 19: 624.

    Google Scholar 

  40. FOREST M.G., PERETTI de E., DAVID M., SEMPE M.: L'adrénarche joue-t-elle vraiment un rôle déterminant dans le développement pubertaire? Etude des dissociations entre adrénarche et gonadarche. Echec du traitement par la déhydroépiandrostérone sulfate dans les retards d'adrénarche. Ann. Endocrinol. (Paris), 1982, 43: 465–495.

    CAS  Google Scholar 

  41. FRANKSON J.R.M., LEJEUNE-LENAIN C., WOLTER R.: Basal levels and responsiveness of 11ß-hydroxyandrostenedione secretion in normal prepubertal children. In: Genazzani A.R., Thijssen J.H.H., Siiteri P.K. eds. Adrenal. New York, Raven Press, 1980: 167–172.

    Google Scholar 

  42. GRANOFF A.B., CHASALOW F.I., BLETHEN S.L.: 17-hydroxyprogesterone responses to adrenocorticotropin in children with premature adrenarche. J. Clin. Endocrinol. Metab., 1985, 60: 409–415.

    PubMed  CAS  Google Scholar 

  43. GRANT D.B., BARNES N.D., MONCRIEFF M., SAVAGE M.O.: Clinical presentation, growth and pubertal development in Addison's disease. Arch. Dis. Child., 1985, 60: 925–928.

    Article  PubMed  CAS  Google Scholar 

  44. GUAZZO E.P., KIRKPATRICK P.J., GOODYER I.M., SHIERS H.M., HERBERT J.: Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effect of age. J. Clin. Endocrinol. Metab., 1996, 81: 3951–3960.

    Article  PubMed  CAS  Google Scholar 

  45. HAUFFA B.P., KAPLAN S., GRUMBACH M.M.: Dissociation between plasma adrenal androgens and cortisol in Cushing's disease and ectopic ACTH-producing tumour; relation to adrenarche. Lancet, 1984, i: 1373–1375.

    Article  Google Scholar 

  46. HAWKINS L.A., CHASALOW F.I., BLETHEN S.L.: The role of adrenocorticotropin testing in evaluating girls with premature adrenarche and hirsutism/pligomenorrhea. J. Clin. Endocrinol. Metab., 1992, 74: 248–253.

    Article  PubMed  CAS  Google Scholar 

  47. HUQ M.S., PFAFF M., JESPERSEN D., ZUCKER I.R., KIRSCHNER M.A.: Concurrence of aldosterone, androgen, and cortisol secretion in adrenal venous effluents. J. Clin. Endocrinol. Metab., 1976, 42: 230–238.

    PubMed  CAS  Google Scholar 

  48. IBANEZ L., VIRDIS R., POTAU N. ET AL.: Natural history of premature pubarche. An auxological study. J. Clin. Endocrinol. Metab., 1992, 74: 254–257.

    Article  PubMed  CAS  Google Scholar 

  49. JUNGTESTAS I., SCHUMACHER M., ROBEL P., BAULIEU E.E.: Actions of steroid hormones and growth factors on glial cells of the central and peripheral nervous system. J. Steroid Biochem. Mol. Biol., 1994, 48: 145–154.

    Article  CAS  Google Scholar 

  50. KAPLOVITZ P.B., COCKRELL J.L., YOUNG R.B.: Premature adrenarche: clinical and diagnostic features. Clin. Pediatr., 1986, 25:

  51. KELNAR C.J.H., BROOK C.G.D.: A mixed longitudinal study of adrenal steroids excretion in childhood and the mechanism of adrenarche. Clin. Endocrinol. (Oxf), 1983, 19: 117–129.

    Article  CAS  Google Scholar 

  52. KENNY F., PREEYASOMBAT C., C M.: Cortisol production rate: normal infants, children and adults. Pediatrics, 1966, 37: 34–42.

    PubMed  CAS  Google Scholar 

  53. KORTH-SCHUTZ S., LEVINE L., NEW M.I.: Evidence for the adrenal source of androgens in precocious adrenarche. Acta Endocrinol. (Kbh), 1976, 82: 342–352.

    CAS  Google Scholar 

  54. KORTH-SCHUTZ S., LEVINE L., NEW M.I.: Serum androgens in normal prepubertal and pubertal children and in children with precocious adrenarche. J. Clin. Endocrinol. Metab., 1976, 42: 117–124.

    PubMed  CAS  Google Scholar 

  55. KREIZER P.M., BLETHEN S.L., FESTA R.S., CHASALOW F.I.: Dehydroepiandrosterone sulfate levels are not suppressible by glucocorticoids before atrenarche. J. Clin. Endocrinol. Metab., 1989, 69: 1309–1311.

    Google Scholar 

  56. LABRIE Y., COUET J., SIMARD J., LABRIE F.: Multihormonal regulation of dehydroepiandrosterone sulfotransferase messenger ribonucleic acid levels in adult rat liver. Endocrinology, 1994, 134(4): 1693–1699.

    Article  PubMed  CAS  Google Scholar 

  57. LARDY H., PARTRIDGE B., KNEER N., WEI Y.: Ergosteroids: induction of thermogenic enzymes in liver of rats treated with steroids derived from dehydroepiandrosterone. Proc Acad Sci USA, 1995, 92: 6617–6619.

    Article  CAS  Google Scholar 

  58. LASHANSKY G., SAENGER P., FISHMAN K. et al.: Normative data for adrenal steroidogenesis in a healthy pediatric population: age- and sex-related changes after adrenocroticotropin stimulation. J clin Endoctinol Metab, 1991, 73: 674–686.

    CAS  Google Scholar 

  59. LEBRETHON M.C. Adrénarche et prémature adrénarche. (Thèse Doctorat de médecine). Université de Rennes, Faculté de Médecine, 1992.

  60. LEE P.A., CJ M.: Puberty in boys: correlation of plasma levels of gonadotrophins (LH, FSH), androgens (testosterone, androstenedione, dehydroepiandrosterone and its sulphate), œstrogens (œstrone and œstradiol), and progestins (progesterone and 17-hydroxyprogesterone). J. Clin. Endocrinol. Metab., 1975, 41: 556–562.

    PubMed  CAS  Google Scholar 

  61. LEE P.A., GAREIS F.J.: Gonadotrophins and sex steroid response to luteinizing hormone-releasing hormone in patients with premature adrenarche. J. Clin. Endocrinol. Metab., 1976, 43: 195–197.

    PubMed  CAS  Google Scholar 

  62. LEE P.A., KOWARSKI A., MIGEON C.J., BLIZZARD R.: Lack of correlation between gonadotrophins and adrenal androgen levels in agonadal children. J. Clin. Endocrinol. Metab., 1975, 40: 664–669.

    PubMed  CAS  Google Scholar 

  63. LEE P.A., MIGEON C.J., BIAS W.B., JONES G.S.: Familial hypersecretion of adrenal androgens transmitted as a dominant non-HLA linked trait. Obstet. Gynecol., 1987, 69: 259–264.

    PubMed  CAS  Google Scholar 

  64. LEE P.A., XENAKIS T., WINER J., MATSEN-BAUGH S.: Puberty in girls: correlation of serum levels of gonadotrophins, prolactin, androgens, œstrogens, and progestins with physical changes. J. Clin. Endocrinol. Metab., 1976, 43: 775–784.

    PubMed  CAS  Google Scholar 

  65. LEGOASCOGNE C., SANANES N., EYCHENNE B. et al.: Androgen biosynthesis in the stomach: expression of cytochrome p450 17 alpha-hydroxylase/17,20-lyase messenger ribonucleic acid and protein, and metabolism of pregnenolone and progesterone by parietal cells of the rat gastric mucosa. Endocrinology, 1995, 136: 1744–1752.

    Article  CAS  Google Scholar 

  66. LEVINE L.S., NEW M.I., PITT P., PETERSON R.E.: Androgen production in boys with sexual precocity and congenital adrenal hyperplasia. Metabolism, 1972, 21: 457–464.

    Article  PubMed  CAS  Google Scholar 

  67. MARTEL C., RHÉAUME E., TAKAHASHI M. et al.: Distribution of 17β-hydroxysteroid dehydrogenase gene expression and activity in human tissues. J. Steroid Biochem. Molec. Biol., 1992, 41: 597–603.

    Article  PubMed  CAS  Google Scholar 

  68. MELLON S.H., SHIVELY J.E., MILLER W.L.: Human proopiomelanocortin-(79–96), a proposed androgen stimulatory hormone, does not affect steroidogenesis in cultured human fetal adrenal cells. J. Clin. Endocrinol. Metab., 1991, 72: 19–22.

    PubMed  CAS  Google Scholar 

  69. MILLER W.L.: Molecular biology of steroid hormone synthesis. Endocr. Rev., 1988, 9: 295–318.

    Article  PubMed  CAS  Google Scholar 

  70. MOLINARI L., LARGO R.H., PRADER A.: Analysis of growth spurt at age seven (mid-growth spurt). Helv. Pediatr. Acta, 1980, 35: 325–334.

    CAS  Google Scholar 

  71. MONTALDO J., YONG A.B.W., FUNDER J.W., CONNELLY J.F.: Serum 5-androstene-3β, 17β-diol sulphate, sex hormone binding globulin and free androgen index in girls with premature adrenarche. J. Steroid Biochem., 1989, 35: 1149–1154.

    Article  Google Scholar 

  72. MORALES A.J., NOLAN J.J., NELSON J.C., YEN S.S.C.: Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J. Clin. Endocrinol. Metab., 1994, 78: 1360–1367.

    Article  PubMed  CAS  Google Scholar 

  73. MUSCATELLI F., STROM T.M., WALKER A.P. ET AL.: Mutations in the DAX-1 gene give rise to both x-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature, 1994, 372: 672–676.

    Article  PubMed  CAS  Google Scholar 

  74. NEVILLE A.M., O'HARE M.J.: in The human adrenal cortex. Berlin, Springer-Verlag, 1982: 12–14.

    Google Scholar 

  75. NICOLAS M.H., CRAVE J.C., FIMBEL S., SIMEAN A., PUGEAT M.: Hyperandrogénie de la femme hirsute et obèse, effets d'un régime hypocalorique. Press. Méd., 1993, 22: 19–22.

    CAS  Google Scholar 

  76. OKABE T., HAJI M., TAKAYANAGI R. et al.: Upregulation of high-affinity dehydroepiandrosterone binding activity by dehydroepiandrosterone in activated human t lymphocytes. J. Clin. Endocrinol. Metab., 1995, 80: 2993–2996.

    Article  PubMed  CAS  Google Scholar 

  77. ORENTREICH N., BRIND J.L., VOGELMAN J.H., ANDRES R., BALDWIN H.: Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. J. Clin. Endocrinol. Metab., 1992, 75: 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  78. PARKER A.N., ATIENZA V., HAGGANS O.C., ODELL W.D.: Failure of prolactin infusion to elicit adrenal androgen secretion. Arch. Androl., 1981, 6: 323–326.

    Article  PubMed  CAS  Google Scholar 

  79. PARKER JR C.R., STANKOVIC A.K., FALANY C.N., FAYE-PETERSEN O., GRIZZLE W.E.: Immunocytochemical analyses of dehydroepiandrosterone sulfotransferase in cultured human fetal adrenal cells. J. Clin. Endocrinol. Metab., 1995, 80: 1027–1031.

    CAS  Google Scholar 

  80. PARKER L., LIFRAK E., SHIVELY J.J. ET AL.: Human adrenal gland cortical androgen-stimulating hormone (CASH) is identical with a portion of the joining peptide of pituitary pro-opiomelanocortin (POMC). Program & Abstracts of the 71th Meeting of the Endocrine Society, 1989,: 97 (abstr 299).

  81. PARKER L.N., LIFRAK E.T., ODELL W.D.: A 600,00 molecular weight human pituitary glycopeptide stimulates adrenal androgen secretion. Endocrinology, 1983, 113: 2092–2096.

    PubMed  CAS  Google Scholar 

  82. PARKER L.N., ODELL W.D.: Control of adrenal androgen secretions. Endocr. Rev, 1980, 1: 392–410.

    Article  PubMed  CAS  Google Scholar 

  83. PENHOAT A., SANCHEZ P., JAILLARD C. ET AL.: Human proopiomelanocortin-(79–96), a proposed androgen stimulatory hormone, does not affect steroidogenesis in cultured human adult adrenal cells. J. Clin. Endocrinol. Metab., 1991, 72: 23–26.

    PubMed  CAS  Google Scholar 

  84. PERETTI de E., ASENCIO M.J., MAPPUS E., FOREST M.G.: 5-androstene-3β, 17β-diol (diol) in human. Exerpta Medica Intern Congress Series, 1984, 352: 506.

    Google Scholar 

  85. PERETTI de E., FOREST M.G.: Unconjugated dehydroepiandrosterone plasma levels in normal subjects from birth to adolescence in humans: the use of a sensitive radioimmunoassay. J. Clin. Endocrinol. Metab., 1976, 43: 982–991.

    PubMed  Google Scholar 

  86. PERETTI de E., FOREST M.G.: Pattern of plasma dehydroepiandrosterone sulfate levels in human from birth to adulthood: evidence for testicular production. J. Clin. Endocrinol. Metab., 1978, 47: 572–577.

    PubMed  Google Scholar 

  87. PERETTI de E., FOREST M.G., BERTRAND J.: Le sulfate de déhydroépiandrostérone plasma tique en endocrinologie pédiatrique. Arch. Fr. Pédiatr., 1980, 37: 28–32.

    Google Scholar 

  88. PERETTI de E., FOREST M.G., DAVID L., FRANÇOIS R., BERTRAND J.: Dehydroepiandrosterone, its sulfate, 17-hydroxyprogesterone and cortisol levels in panhypopituitarism and isolated GH deficiency. Evidence for a pituitary hormone controlling adrenal androgen biosynthesis. Pediatr. Res., 1976, 12: 151.

    Google Scholar 

  89. PESCOVITZ O.H., COMITE F., CASSORLA F. et al.: True precocious puberty complicating congenital adrenal hyperplasia: treatment with a luteinizing hormone-releasing hormone analog. J. Clin. Endocrinol. Metab., 1984, 58: 857–861.

    PubMed  CAS  Google Scholar 

  90. PINTOR C., GENAZZANI A.R., PUGGIONI R. et al.: Effect of weight loss on adrenal androgen plasma levels in obese prepubertal girls. In: Genazzani A.R., Thijssen J.H.H., Siiteri P.K. eds. Adrenal androgens. New York, Raven Press, 1980: 259–266.

    Google Scholar 

  91. PRATT J.H., MANATUNGA A.K., WAGNER M.A., JONES J.J., MEANEY F.J.: Adrenal androgens excretion during adrenarche. Relation to race and blood pressure. Hypertension, 1990, 16: 462–467.

    PubMed  CAS  Google Scholar 

  92. RANKE M.B., ROSENDAH W., GUPTA D.: Responsiveness of cortisol and dehydroepiandrosterone to ACTH in children. Horm. Res., 1982, 16: 32–41.

    PubMed  CAS  Google Scholar 

  93. RAPPAPORT R., FOREST M.G., BAYARD F. et al.: Plasma androgens and LH in scoliotic patients with premature adrenarche. J. Clin. Endocrinol. Metab., 1974, 38: 401–406.

    PubMed  CAS  Google Scholar 

  94. REITER E.O., FULDANER V.G., ROOT A.W.: Secretion of the adrenal androgen, dehydroepiandrosterone sulfate, during normal infancy, childhood and adolescence in sick infants and in children with endocrinologic abnormalities. J. Pediatr., 1977, 90: 766–770.

    Article  PubMed  CAS  Google Scholar 

  95. REMER T., PIETRZIK K.: Concept of the importance of nutritional status in the regulation of adrenal androgen secretion. J. Clin. Biochem. Nutr., 1987, 3: 179–187.

    Google Scholar 

  96. RICH B.H., ROSENFIELD R.L., LUCKY A.W., HELKE J.C., OTTO P.: Adrenarche: changing adrenal response to adrenocorticotropin. J. Clin Endocrinol. Metab., 1981, 52: 1129–1136.

    PubMed  CAS  Google Scholar 

  97. RIDDICK L.M., GARIBALDI L.R., WANG M.E. et al.: 3a-androstanediol glycuronide in premature development of sexual hair. J. Pediatr., 1991, 79: 260–266.

    Google Scholar 

  98. ROBEL P., BAULIEU E.E.: Neurosteroids. A new function of the brain. Med. Sciences, 1990, 6: 252–260.

    Google Scholar 

  99. ROBEL P., BAULIEU E.E.: Neurosteroids. Biosynthesis and function. Trends Endocrinol. Metab., 1994, 5: 1–8.

    Article  PubMed  CAS  Google Scholar 

  100. ROMANOFF L.P., MOORIS C.W., WELCH P., RODRIGUEZ R.M., PINCUS G.: The metabolism of cortisol-4-14C in young and ederly men. J. Clin. Endocrinol. Metab., 1961, 21: 1413–1425.

    PubMed  CAS  Google Scholar 

  101. ROSENFELD R.S., HELLMAN L., ROFFWARG H. et al.: Dehydroepiandrosterone is secreted episodically and synchronously with cortisol by normal man. J. Clin. Endocrinol. Metab., 1971, 33: 87–92.

    PubMed  CAS  Google Scholar 

  102. ROSENFIELD R.: Plasma 17-ketosteroids and 17-hydroxysteroids in girls with premature development of sexual hair. J. Pediatr., 1971, 79: 260–266.

    Article  PubMed  CAS  Google Scholar 

  103. ROSENFIELD R.L., HALKE J., LUCKY A.W.: Dexamethasone preparation does not alter corticoid and androgen responses to adrenocorticotropin. J. Clin. Endocrinol. Metab., 1985, 60: 585–589.

    PubMed  CAS  Google Scholar 

  104. ROSENFIELD R.M., RICH B.H., LUCKY A.W.: Adrenarche as a cause of begnin pseudopuberty in boys. J. Pediatr., 1982, 101: 1005–1009.

    Article  PubMed  CAS  Google Scholar 

  105. SAENGER P., REITER E.O.: Editorial. Premature Adrenarche: a normal variant of puberty. J. Clin. Endocrinol. Metab., 1992, 74: 236–238.

    Article  PubMed  CAS  Google Scholar 

  106. SCHIEBINGER R.J., ALBERTSON B.D., CASSORLA F.G. et al.: The developmental changes in plasma adrenal androgens during infancy and during adrenarche are associated with changing activities of adrenal microsomal 17-hydroxylase and 17,20-desmolase. J Clin Invest, 1981, 67: 1177–1182.

    Article  PubMed  CAS  Google Scholar 

  107. SCHIEBINGER R.J., CHROUSOS G.P., CUTLER JR G.B., LORIAUX D.L.: The effect of serum prolactin on plasma adrenal androgens and the production and metabolic clearance rate of DHA-sulfate in normal and hyperprolactinemic subjects. J. Clin. Endocrinol. Metab., 1986, 62: 202–209.

    PubMed  CAS  Google Scholar 

  108. SIEGEL S.F., FINEGOLD D.N., URBAN M.D., MCVIE R., LEE P.A.: Premature pubarche: etiological heterogeneity. J. Clin. Endocrinol. Metab., 1992, 74: 239–247.

    Article  PubMed  CAS  Google Scholar 

  109. SILVERMAN S.H., MIGEON C.J., ROSENBERG E., WILKINS L.: Precocious growth of sexual hair without other secondary sexual development; «premature pubarche», a constitutional variation of adolescence. Pediatrics, 1952, 10: 426–431.

    PubMed  CAS  Google Scholar 

  110. SIZONENKO P.C., PAUNIER L.: Hormonal changes in puberty. III. Correlation of plasma dehydroepiandrosterone, testosterone, FSH, and LH with stages of puberty and bone age in normal boys and girls and in patients with Addison's disease or hypogonadism or with premature or late adrenarche. J. Clin. Endocrinol. Metab., 1975, 41: 894–904.

    PubMed  CAS  Google Scholar 

  111. SIZONENKO P.C., PAUNIER L.: Failure of dehydroepiandrosterone enanthate to promote growth. J. Clin. Endocrinol. Metab., 1986, 62: 1322–1324.

    Article  PubMed  CAS  Google Scholar 

  112. SIZONENKO P.C., PAUNIER L., CARMIGNAC D.: Hormonal changes in puberty. IV. Longitudinal study of adrenal androgne secretions. Horm. Res., 1976, 7: 288–302.

    PubMed  CAS  Google Scholar 

  113. SKLAR C.A., KAPLAN S.L., GRUMBACH M.M.: Evidence for dissociation between adrenarche and gonadarche: studies in patients with idiopathic precocious puberty, gonadal dysgenesis, isolated gonadotripin deficiency, and constitutionlaly delayed growth and adolescence. J. Clin. Endocrinol. Metab., 1980, 51: 548–556.

    PubMed  CAS  Google Scholar 

  114. SKLAR C.A., KAPLAN S.L., GRUMBACH M.M.: Lack of effect of estrogens on adrenal androgen secretion in children and adolescents with a comment on estrogens and pubic hair growth. Clin. Endocrinol. (Oxf.), 1981, 14: 311–320.

    Article  CAS  Google Scholar 

  115. SMITH C.P., DUNGER D.B., K W.A.J. et al.: Relationship between insulin, insulin-like growth factor I, and dehydroepiandrosterone sulfate concentrations during childhood, puberty, and adult life. J. Clin. Endocrinol. Metab., 1989, 68: 932–937.

    PubMed  CAS  Google Scholar 

  116. SWINYARD C.A.: Growth of the human suprarenal glands. Anat. Rec., 1943, 87: 141–150.

    Article  Google Scholar 

  117. TELLER W.M., HOMOKI J., WUDY S., SCHLICKENRIEDER J.H.M.: Adrenarche is dissociated from gonadarche. Studies in patients with Turner's syndrome. Acta Endocrinol. (Copenh), 1986, 113: 232–240.

    Google Scholar 

  118. TEMEK J.W., PANG S., NELSON C., NEW M.I.: Genetic defects of steroidogenesis in premature pubarche. J. Clin. Endocrinol. Metab., 1987, 64: 609–617.

    Google Scholar 

  119. THOMAS G., FRENOY N., LEGRAIN S. et al.: Serum dehydroepiandrosterone sulfate levels as an individual marker. J. Clin. Endocrinol. Metab., 1994, 79: 1273–1276.

    Article  PubMed  CAS  Google Scholar 

  120. VERMEULEN A.: Les androgènes circulants. In: Les Androgènes. Paris, Mason, 1979: 1–20.

    Google Scholar 

  121. VERMEULEN A., DESLYPERE J.P., SCHELFHOUT N., VERDONK C., RUBENS R.: Arenocortical function in old age: response to acute adrenocorticotropin stimulation. J. Clin. Endocrinol. Metab., 1982, 54: 187–191.

    PubMed  CAS  Google Scholar 

  122. VOUTILAINEN R., PERHEENTUPA J., APTER D.: Benign premature adrenarche: clinical features and serum levels. Acta Paediat. Scand., 1983, 72: 707–711.

    Article  PubMed  CAS  Google Scholar 

  123. WARNE G., CARTER J., FAIMAN C., F R., WINTER J.S.D.: Hormonal changes in girls with precocious adrenarche: a possible role for estradiol or prolactin. J. Pediatr., 1978, 92: 743–747.

    Article  PubMed  CAS  Google Scholar 

  124. WARNE G.L., CARTER J.N., FAIMAN C., REYES F., WINTER J.S.D.: The relationship of adrenal androgens to the secretory patterns for cortisol, prolactin, and growth hormone during early puberty. Pediatr. Res., 1979, 13: 211–213.

    Article  PubMed  CAS  Google Scholar 

  125. WELLE S., JOZEFOWICZ R., STATT M.: Failure of dehydroepiandrosterone to influence energy and protein metabolism in humans. J. Clin. Endocrinol. Metab., 1990, 71: 1259–1264.

    PubMed  CAS  Google Scholar 

  126. WIERMAN M.E., BEARDSWORTH D.E., CRAWFORD J.D. et al.: Adrenarche and skeletal maturation during luteinizing hormone releasing hormone analogue suppression of gonadarche. J. Clin. Invest., 1986, 77: 121–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forest, M.G. La puberté surrénalienne. Androl. 7, 165–186 (1997). https://doi.org/10.1007/BF03034931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03034931

Mots-clés

Key-words